Spaces:
Running
Running
from __future__ import annotations | |
from collections.abc import Callable, Sequence | |
from pathlib import Path | |
from typing import TYPE_CHECKING, Any, ClassVar | |
import yaml | |
from cachetools import TTLCache | |
from langchain_core.documents import Document | |
from pydantic import BaseModel | |
from langflow.custom.custom_component.base_component import BaseComponent | |
from langflow.helpers.flow import list_flows, load_flow, run_flow | |
from langflow.schema import Data | |
from langflow.services.deps import get_storage_service, get_variable_service, session_scope | |
from langflow.services.storage.service import StorageService | |
from langflow.template.utils import update_frontend_node_with_template_values | |
from langflow.type_extraction.type_extraction import post_process_type | |
from langflow.utils import validate | |
if TYPE_CHECKING: | |
from langchain.callbacks.base import BaseCallbackHandler | |
from langflow.graph.graph.base import Graph | |
from langflow.graph.vertex.base import Vertex | |
from langflow.schema.dotdict import dotdict | |
from langflow.schema.schema import OutputValue | |
from langflow.services.storage.service import StorageService | |
from langflow.services.tracing.schema import Log | |
from langflow.services.tracing.service import TracingService | |
class CustomComponent(BaseComponent): | |
"""Represents a custom component in Langflow. | |
Attributes: | |
name (Optional[str]): This attribute helps the frontend apply styles to known components. | |
display_name (Optional[str]): The display name of the custom component. | |
description (Optional[str]): The description of the custom component. | |
code (Optional[str]): The code of the custom component. | |
field_config (dict): The field configuration of the custom component. | |
code_class_base_inheritance (ClassVar[str]): The base class name for the custom component. | |
function_entrypoint_name (ClassVar[str]): The name of the function entrypoint for the custom component. | |
function (Optional[Callable]): The function associated with the custom component. | |
repr_value (Optional[Any]): The representation value of the custom component. | |
user_id (Optional[Union[UUID, str]]): The user ID associated with the custom component. | |
status (Optional[Any]): The status of the custom component. | |
_tree (Optional[dict]): The code tree of the custom component. | |
""" | |
name: str | None = None | |
"""The name of the component used to styles. Defaults to None.""" | |
display_name: str | None = None | |
"""The display name of the component. Defaults to None.""" | |
description: str | None = None | |
"""The description of the component. Defaults to None.""" | |
icon: str | None = None | |
"""The icon of the component. It should be an emoji. Defaults to None.""" | |
is_input: bool | None = None | |
"""The input state of the component. Defaults to None. | |
If True, the component must have a field named 'input_value'.""" | |
add_tool_output: bool | None = False | |
"""Indicates whether the component will be treated as a tool. Defaults to False.""" | |
is_output: bool | None = None | |
"""The output state of the component. Defaults to None. | |
If True, the component must have a field named 'input_value'.""" | |
field_config: dict = {} | |
"""The field configuration of the component. Defaults to an empty dictionary.""" | |
field_order: list[str] | None = None | |
"""The field order of the component. Defaults to an empty list.""" | |
frozen: bool | None = False | |
"""The default frozen state of the component. Defaults to False.""" | |
build_parameters: dict | None = None | |
"""The build parameters of the component. Defaults to None.""" | |
_vertex: Vertex | None = None | |
"""The edge target parameter of the component. Defaults to None.""" | |
_code_class_base_inheritance: ClassVar[str] = "CustomComponent" | |
function_entrypoint_name: ClassVar[str] = "build" | |
function: Callable | None = None | |
repr_value: Any | None = "" | |
status: Any | None = None | |
"""The status of the component. This is displayed on the frontend. Defaults to None.""" | |
_flows_data: list[Data] | None = None | |
_outputs: list[OutputValue] = [] | |
_logs: list[Log] = [] | |
_output_logs: dict[str, list[Log] | Log] = {} | |
_tracing_service: TracingService | None = None | |
_tree: dict | None = None | |
def __init__(self, **data) -> None: | |
"""Initializes a new instance of the CustomComponent class. | |
Args: | |
**data: Additional keyword arguments to initialize the custom component. | |
""" | |
self.cache: TTLCache = TTLCache(maxsize=1024, ttl=60) | |
self._logs: list[Log] = [] | |
self._results: dict = {} | |
self._artifacts: dict = {} | |
super().__init__(**data) | |
def set_attributes(self, parameters: dict) -> None: | |
pass | |
def set_parameters(self, parameters: dict) -> None: | |
self._parameters = parameters | |
self.set_attributes(self._parameters) | |
def trace_name(self) -> str: | |
if hasattr(self, "_id") and self._id is None: | |
msg = "Component id is not set" | |
raise ValueError(msg) | |
if hasattr(self, "_id"): | |
return f"{self.display_name} ({self._id})" | |
return f"{self.display_name}" | |
def update_state(self, name: str, value: Any) -> None: | |
if not self._vertex: | |
msg = "Vertex is not set" | |
raise ValueError(msg) | |
try: | |
self._vertex.graph.update_state(name=name, record=value, caller=self._vertex.id) | |
except Exception as e: | |
msg = f"Error updating state: {e}" | |
raise ValueError(msg) from e | |
def stop(self, output_name: str | None = None) -> None: | |
if not output_name and self._vertex and len(self._vertex.outputs) == 1: | |
output_name = self._vertex.outputs[0]["name"] | |
elif not output_name: | |
msg = "You must specify an output name to call stop" | |
raise ValueError(msg) | |
if not self._vertex: | |
msg = "Vertex is not set" | |
raise ValueError(msg) | |
try: | |
self.graph.mark_branch(vertex_id=self._vertex.id, output_name=output_name, state="INACTIVE") | |
except Exception as e: | |
msg = f"Error stopping {self.display_name}: {e}" | |
raise ValueError(msg) from e | |
def append_state(self, name: str, value: Any) -> None: | |
if not self._vertex: | |
msg = "Vertex is not set" | |
raise ValueError(msg) | |
try: | |
self._vertex.graph.append_state(name=name, record=value, caller=self._vertex.id) | |
except Exception as e: | |
msg = f"Error appending state: {e}" | |
raise ValueError(msg) from e | |
def get_state(self, name: str): | |
if not self._vertex: | |
msg = "Vertex is not set" | |
raise ValueError(msg) | |
try: | |
return self._vertex.graph.get_state(name=name) | |
except Exception as e: | |
msg = f"Error getting state: {e}" | |
raise ValueError(msg) from e | |
def resolve_path(path: str) -> str: | |
"""Resolves the path to an absolute path.""" | |
if not path: | |
return path | |
path_object = Path(path) | |
if path_object.parts and path_object.parts[0] == "~": | |
path_object = path_object.expanduser() | |
elif path_object.is_relative_to("."): | |
path_object = path_object.resolve() | |
return str(path_object) | |
def get_full_path(self, path: str) -> str: | |
storage_svc: StorageService = get_storage_service() | |
flow_id, file_name = path.split("/", 1) | |
return storage_svc.build_full_path(flow_id, file_name) | |
def graph(self): | |
return self._vertex.graph | |
def user_id(self): | |
if hasattr(self, "_user_id") and self._user_id: | |
return self._user_id | |
return self.graph.user_id | |
def flow_id(self): | |
return self.graph.flow_id | |
def flow_name(self): | |
return self.graph.flow_name | |
def _get_field_order(self): | |
return self.field_order or list(self.field_config.keys()) | |
def custom_repr(self): | |
"""Returns the custom representation of the custom component. | |
Returns: | |
str: The custom representation of the custom component. | |
""" | |
if self.repr_value == "": | |
self.repr_value = self.status | |
if isinstance(self.repr_value, dict): | |
return yaml.dump(self.repr_value) | |
if isinstance(self.repr_value, str): | |
return self.repr_value | |
if isinstance(self.repr_value, BaseModel) and not isinstance(self.repr_value, Data): | |
return str(self.repr_value) | |
return self.repr_value | |
def build_config(self): | |
"""Builds the configuration for the custom component. | |
Returns: | |
dict: The configuration for the custom component. | |
""" | |
return self.field_config | |
def update_build_config( | |
self, | |
build_config: dotdict, | |
field_value: Any, | |
field_name: str | None = None, | |
): | |
build_config[field_name]["value"] = field_value | |
return build_config | |
def tree(self): | |
"""Gets the code tree of the custom component. | |
Returns: | |
dict: The code tree of the custom component. | |
""" | |
return self.get_code_tree(self._code or "") | |
def to_data(self, data: Any, *, keys: list[str] | None = None, silent_errors: bool = False) -> list[Data]: | |
"""Converts input data into a list of Data objects. | |
Args: | |
data (Any): The input data to be converted. It can be a single item or a sequence of items. | |
If the input data is a Langchain Document, text_key and data_key are ignored. | |
keys (List[str], optional): The keys to access the text and data values in each item. | |
It should be a list of strings where the first element is the text key and the second element | |
is the data key. | |
Defaults to None, in which case the default keys "text" and "data" are used. | |
silent_errors (bool, optional): Whether to suppress errors when the specified keys are not found | |
in the data. | |
Returns: | |
List[Data]: A list of Data objects. | |
Raises: | |
ValueError: If the input data is not of a valid type or if the specified keys are not found in the data. | |
""" | |
if not keys: | |
keys = [] | |
data_objects = [] | |
if not isinstance(data, Sequence): | |
data = [data] | |
for item in data: | |
data_dict = {} | |
if isinstance(item, Document): | |
data_dict = item.metadata | |
data_dict["text"] = item.page_content | |
elif isinstance(item, BaseModel): | |
model_dump = item.model_dump() | |
for key in keys: | |
if silent_errors: | |
data_dict[key] = model_dump.get(key, "") | |
else: | |
try: | |
data_dict[key] = model_dump[key] | |
except KeyError as e: | |
msg = f"Key {key} not found in {item}" | |
raise ValueError(msg) from e | |
elif isinstance(item, str): | |
data_dict = {"text": item} | |
elif isinstance(item, dict): | |
data_dict = item.copy() | |
else: | |
msg = f"Invalid data type: {type(item)}" | |
raise TypeError(msg) | |
data_objects.append(Data(data=data_dict)) | |
return data_objects | |
def get_method_return_type(self, method_name: str): | |
build_method = self.get_method(method_name) | |
if not build_method or not build_method.get("has_return"): | |
return [] | |
return_type = build_method["return_type"] | |
return self._extract_return_type(return_type) | |
def create_references_from_data(self, data: list[Data], *, include_data: bool = False) -> str: | |
"""Create references from a list of data. | |
Args: | |
data (List[dict]): A list of data, where each record is a dictionary. | |
include_data (bool, optional): Whether to include data in the references. Defaults to False. | |
Returns: | |
str: A string containing the references in markdown format. | |
""" | |
if not data: | |
return "" | |
markdown_string = "---\n" | |
for value in data: | |
markdown_string += f"- Text: {value.get_text()}" | |
if include_data: | |
markdown_string += f" Data: {value.data}" | |
markdown_string += "\n" | |
return markdown_string | |
def get_function_entrypoint_args(self) -> list: | |
"""Gets the arguments of the function entrypoint for the custom component. | |
Returns: | |
list: The arguments of the function entrypoint. | |
""" | |
build_method = self.get_method(self._function_entrypoint_name) | |
if not build_method: | |
return [] | |
args = build_method["args"] | |
for arg in args: | |
if not arg.get("type") and arg.get("name") != "self": | |
# Set the type to Data | |
arg["type"] = "Data" | |
return args | |
def get_method(self, method_name: str): | |
"""Gets the build method for the custom component. | |
Returns: | |
dict: The build method for the custom component. | |
""" | |
if not self._code: | |
return {} | |
component_classes = [ | |
cls for cls in self.tree["classes"] if "Component" in cls["bases"] or "CustomComponent" in cls["bases"] | |
] | |
if not component_classes: | |
return {} | |
# Assume the first Component class is the one we're interested in | |
component_class = component_classes[0] | |
build_methods = [method for method in component_class["methods"] if method["name"] == (method_name)] | |
return build_methods[0] if build_methods else {} | |
def _get_function_entrypoint_return_type(self) -> list[Any]: | |
"""Gets the return type of the function entrypoint for the custom component. | |
Returns: | |
List[Any]: The return type of the function entrypoint. | |
""" | |
return self.get_method_return_type(self._function_entrypoint_name) | |
def _extract_return_type(self, return_type: Any) -> list[Any]: | |
return post_process_type(return_type) | |
def get_main_class_name(self): | |
"""Gets the main class name of the custom component. | |
Returns: | |
str: The main class name of the custom component. | |
""" | |
if not self._code: | |
return "" | |
base_name = self._code_class_base_inheritance | |
method_name = self._function_entrypoint_name | |
classes = [] | |
for item in self.tree.get("classes", []): | |
if base_name in item["bases"]: | |
method_names = [method["name"] for method in item["methods"]] | |
if method_name in method_names: | |
classes.append(item["name"]) | |
# Get just the first item | |
return next(iter(classes), "") | |
def template_config(self): | |
"""Gets the template configuration for the custom component. | |
Returns: | |
dict: The template configuration for the custom component. | |
""" | |
if not self._template_config: | |
self._template_config = self.build_template_config() | |
return self._template_config | |
def variables(self): | |
"""Returns the variable for the current user with the specified name. | |
Raises: | |
ValueError: If the user id is not set. | |
Returns: | |
The variable for the current user with the specified name. | |
""" | |
def get_variable(name: str, field: str): | |
if hasattr(self, "_user_id") and not self.user_id: | |
msg = f"User id is not set for {self.__class__.__name__}" | |
raise ValueError(msg) | |
variable_service = get_variable_service() # Get service instance | |
# Retrieve and decrypt the variable by name for the current user | |
with session_scope() as session: | |
user_id = self.user_id or "" | |
return variable_service.get_variable(user_id=user_id, name=name, field=field, session=session) | |
return get_variable | |
def list_key_names(self): | |
"""Lists the names of the variables for the current user. | |
Raises: | |
ValueError: If the user id is not set. | |
Returns: | |
List[str]: The names of the variables for the current user. | |
""" | |
if hasattr(self, "_user_id") and not self.user_id: | |
msg = f"User id is not set for {self.__class__.__name__}" | |
raise ValueError(msg) | |
variable_service = get_variable_service() | |
with session_scope() as session: | |
return variable_service.list_variables_sync(user_id=self.user_id, session=session) | |
def index(self, value: int = 0): | |
"""Returns a function that returns the value at the given index in the iterable. | |
Args: | |
value (int): The index value. | |
Returns: | |
Callable: A function that returns the value at the given index. | |
""" | |
def get_index(iterable: list[Any]): | |
return iterable[value] if iterable else iterable | |
return get_index | |
def get_function(self): | |
"""Gets the function associated with the custom component. | |
Returns: | |
Callable: The function associated with the custom component. | |
""" | |
return validate.create_function(self._code, self._function_entrypoint_name) | |
async def load_flow(self, flow_id: str, tweaks: dict | None = None) -> Graph: | |
if not self.user_id: | |
msg = "Session is invalid" | |
raise ValueError(msg) | |
return await load_flow(user_id=str(self.user_id), flow_id=flow_id, tweaks=tweaks) | |
async def run_flow( | |
self, | |
inputs: dict | list[dict] | None = None, | |
flow_id: str | None = None, | |
flow_name: str | None = None, | |
output_type: str | None = "chat", | |
tweaks: dict | None = None, | |
) -> Any: | |
return await run_flow( | |
inputs=inputs, | |
output_type=output_type, | |
flow_id=flow_id, | |
flow_name=flow_name, | |
tweaks=tweaks, | |
user_id=str(self.user_id), | |
run_id=self.graph.run_id, | |
) | |
def list_flows(self) -> list[Data]: | |
if not self.user_id: | |
msg = "Session is invalid" | |
raise ValueError(msg) | |
try: | |
return list_flows(user_id=str(self.user_id)) | |
except Exception as e: | |
msg = f"Error listing flows: {e}" | |
raise ValueError(msg) from e | |
def build(self, *args: Any, **kwargs: Any) -> Any: | |
"""Builds the custom component. | |
Args: | |
*args: The positional arguments. | |
**kwargs: The keyword arguments. | |
Returns: | |
Any: The result of the build process. | |
""" | |
raise NotImplementedError | |
def post_code_processing(self, new_frontend_node: dict, current_frontend_node: dict): | |
"""This function is called after the code validation is done.""" | |
return update_frontend_node_with_template_values( | |
frontend_node=new_frontend_node, raw_frontend_node=current_frontend_node | |
) | |
def get_langchain_callbacks(self) -> list[BaseCallbackHandler]: | |
if self._tracing_service: | |
return self._tracing_service.get_langchain_callbacks() | |
return [] | |