Spaces:
Running
Running
from typing import TYPE_CHECKING | |
from langchain_community.vectorstores import Vectara | |
from loguru import logger | |
from langflow.base.vectorstores.model import LCVectorStoreComponent, check_cached_vector_store | |
from langflow.helpers.data import docs_to_data | |
from langflow.io import HandleInput, IntInput, MessageTextInput, SecretStrInput, StrInput | |
from langflow.schema import Data | |
if TYPE_CHECKING: | |
from langchain_community.vectorstores import Vectara | |
class VectaraVectorStoreComponent(LCVectorStoreComponent): | |
"""Vectara Vector Store with search capabilities.""" | |
display_name: str = "Vectara" | |
description: str = "Vectara Vector Store with search capabilities" | |
documentation = "https://python.langchain.com/docs/modules/data_connection/vectorstores/integrations/vectara" | |
name = "Vectara" | |
icon = "Vectara" | |
inputs = [ | |
StrInput(name="vectara_customer_id", display_name="Vectara Customer ID", required=True), | |
StrInput(name="vectara_corpus_id", display_name="Vectara Corpus ID", required=True), | |
SecretStrInput(name="vectara_api_key", display_name="Vectara API Key", required=True), | |
HandleInput( | |
name="embedding", | |
display_name="Embedding", | |
input_types=["Embeddings"], | |
), | |
HandleInput( | |
name="ingest_data", | |
display_name="Ingest Data", | |
input_types=["Document", "Data"], | |
is_list=True, | |
), | |
MessageTextInput( | |
name="search_query", | |
display_name="Search Query", | |
), | |
IntInput( | |
name="number_of_results", | |
display_name="Number of Results", | |
info="Number of results to return.", | |
value=4, | |
advanced=True, | |
), | |
] | |
def build_vector_store(self) -> "Vectara": | |
"""Builds the Vectara object.""" | |
try: | |
from langchain_community.vectorstores import Vectara | |
except ImportError as e: | |
msg = "Could not import Vectara. Please install it with `pip install langchain-community`." | |
raise ImportError(msg) from e | |
vectara = Vectara( | |
vectara_customer_id=self.vectara_customer_id, | |
vectara_corpus_id=self.vectara_corpus_id, | |
vectara_api_key=self.vectara_api_key, | |
) | |
self._add_documents_to_vector_store(vectara) | |
return vectara | |
def _add_documents_to_vector_store(self, vector_store: "Vectara") -> None: | |
"""Adds documents to the Vector Store.""" | |
if not self.ingest_data: | |
self.status = "No documents to add to Vectara" | |
return | |
documents = [] | |
for _input in self.ingest_data or []: | |
if isinstance(_input, Data): | |
documents.append(_input.to_lc_document()) | |
else: | |
documents.append(_input) | |
if documents: | |
logger.debug(f"Adding {len(documents)} documents to Vectara.") | |
vector_store.add_documents(documents) | |
self.status = f"Added {len(documents)} documents to Vectara" | |
else: | |
logger.debug("No documents to add to Vectara.") | |
self.status = "No valid documents to add to Vectara" | |
def search_documents(self) -> list[Data]: | |
vector_store = self.build_vector_store() | |
if self.search_query and isinstance(self.search_query, str) and self.search_query.strip(): | |
docs = vector_store.similarity_search( | |
query=self.search_query, | |
k=self.number_of_results, | |
) | |
data = docs_to_data(docs) | |
self.status = f"Found {len(data)} results for the query: {self.search_query}" | |
return data | |
self.status = "No search query provided" | |
return [] | |