Spaces:
Running
Running
from langchain_community.vectorstores import SupabaseVectorStore | |
from supabase.client import Client, create_client | |
from langflow.base.vectorstores.model import LCVectorStoreComponent, check_cached_vector_store | |
from langflow.helpers.data import docs_to_data | |
from langflow.io import DataInput, HandleInput, IntInput, MultilineInput, SecretStrInput, StrInput | |
from langflow.schema import Data | |
class SupabaseVectorStoreComponent(LCVectorStoreComponent): | |
display_name = "Supabase" | |
description = "Supabase Vector Store with search capabilities" | |
documentation = "https://python.langchain.com/v0.2/docs/integrations/vectorstores/supabase/" | |
name = "SupabaseVectorStore" | |
icon = "Supabase" | |
inputs = [ | |
StrInput(name="supabase_url", display_name="Supabase URL", required=True), | |
SecretStrInput(name="supabase_service_key", display_name="Supabase Service Key", required=True), | |
StrInput(name="table_name", display_name="Table Name", advanced=True), | |
StrInput(name="query_name", display_name="Query Name"), | |
MultilineInput(name="search_query", display_name="Search Query"), | |
DataInput( | |
name="ingest_data", | |
display_name="Ingest Data", | |
is_list=True, | |
), | |
HandleInput(name="embedding", display_name="Embedding", input_types=["Embeddings"]), | |
IntInput( | |
name="number_of_results", | |
display_name="Number of Results", | |
info="Number of results to return.", | |
value=4, | |
advanced=True, | |
), | |
] | |
def build_vector_store(self) -> SupabaseVectorStore: | |
supabase: Client = create_client(self.supabase_url, supabase_key=self.supabase_service_key) | |
documents = [] | |
for _input in self.ingest_data or []: | |
if isinstance(_input, Data): | |
documents.append(_input.to_lc_document()) | |
else: | |
documents.append(_input) | |
if documents: | |
supabase_vs = SupabaseVectorStore.from_documents( | |
documents=documents, | |
embedding=self.embedding, | |
query_name=self.query_name, | |
client=supabase, | |
table_name=self.table_name, | |
) | |
else: | |
supabase_vs = SupabaseVectorStore( | |
client=supabase, | |
embedding=self.embedding, | |
table_name=self.table_name, | |
query_name=self.query_name, | |
) | |
return supabase_vs | |
def search_documents(self) -> list[Data]: | |
vector_store = self.build_vector_store() | |
if self.search_query and isinstance(self.search_query, str) and self.search_query.strip(): | |
docs = vector_store.similarity_search( | |
query=self.search_query, | |
k=self.number_of_results, | |
) | |
data = docs_to_data(docs) | |
self.status = data | |
return data | |
return [] | |