Tai Truong
fix readme
d202ada
from langchain_community.vectorstores import SupabaseVectorStore
from supabase.client import Client, create_client
from langflow.base.vectorstores.model import LCVectorStoreComponent, check_cached_vector_store
from langflow.helpers.data import docs_to_data
from langflow.io import DataInput, HandleInput, IntInput, MultilineInput, SecretStrInput, StrInput
from langflow.schema import Data
class SupabaseVectorStoreComponent(LCVectorStoreComponent):
display_name = "Supabase"
description = "Supabase Vector Store with search capabilities"
documentation = "https://python.langchain.com/v0.2/docs/integrations/vectorstores/supabase/"
name = "SupabaseVectorStore"
icon = "Supabase"
inputs = [
StrInput(name="supabase_url", display_name="Supabase URL", required=True),
SecretStrInput(name="supabase_service_key", display_name="Supabase Service Key", required=True),
StrInput(name="table_name", display_name="Table Name", advanced=True),
StrInput(name="query_name", display_name="Query Name"),
MultilineInput(name="search_query", display_name="Search Query"),
DataInput(
name="ingest_data",
display_name="Ingest Data",
is_list=True,
),
HandleInput(name="embedding", display_name="Embedding", input_types=["Embeddings"]),
IntInput(
name="number_of_results",
display_name="Number of Results",
info="Number of results to return.",
value=4,
advanced=True,
),
]
@check_cached_vector_store
def build_vector_store(self) -> SupabaseVectorStore:
supabase: Client = create_client(self.supabase_url, supabase_key=self.supabase_service_key)
documents = []
for _input in self.ingest_data or []:
if isinstance(_input, Data):
documents.append(_input.to_lc_document())
else:
documents.append(_input)
if documents:
supabase_vs = SupabaseVectorStore.from_documents(
documents=documents,
embedding=self.embedding,
query_name=self.query_name,
client=supabase,
table_name=self.table_name,
)
else:
supabase_vs = SupabaseVectorStore(
client=supabase,
embedding=self.embedding,
table_name=self.table_name,
query_name=self.query_name,
)
return supabase_vs
def search_documents(self) -> list[Data]:
vector_store = self.build_vector_store()
if self.search_query and isinstance(self.search_query, str) and self.search_query.strip():
docs = vector_store.similarity_search(
query=self.search_query,
k=self.number_of_results,
)
data = docs_to_data(docs)
self.status = data
return data
return []