Spaces:
Running
Running
from langchain.embeddings.base import Embeddings | |
from langchain_community.vectorstores import Qdrant | |
from langflow.base.vectorstores.model import LCVectorStoreComponent, check_cached_vector_store | |
from langflow.helpers.data import docs_to_data | |
from langflow.io import ( | |
DataInput, | |
DropdownInput, | |
HandleInput, | |
IntInput, | |
MultilineInput, | |
SecretStrInput, | |
StrInput, | |
) | |
from langflow.schema import Data | |
class QdrantVectorStoreComponent(LCVectorStoreComponent): | |
display_name = "Qdrant" | |
description = "Qdrant Vector Store with search capabilities" | |
documentation = "https://python.langchain.com/docs/modules/data_connection/vectorstores/integrations/qdrant" | |
icon = "Qdrant" | |
inputs = [ | |
StrInput(name="collection_name", display_name="Collection Name", required=True), | |
StrInput(name="host", display_name="Host", value="localhost", advanced=True), | |
IntInput(name="port", display_name="Port", value=6333, advanced=True), | |
IntInput(name="grpc_port", display_name="gRPC Port", value=6334, advanced=True), | |
SecretStrInput(name="api_key", display_name="API Key", advanced=True), | |
StrInput(name="prefix", display_name="Prefix", advanced=True), | |
IntInput(name="timeout", display_name="Timeout", advanced=True), | |
StrInput(name="path", display_name="Path", advanced=True), | |
StrInput(name="url", display_name="URL", advanced=True), | |
DropdownInput( | |
name="distance_func", | |
display_name="Distance Function", | |
options=["Cosine", "Euclidean", "Dot Product"], | |
value="Cosine", | |
advanced=True, | |
), | |
StrInput(name="content_payload_key", display_name="Content Payload Key", value="page_content", advanced=True), | |
StrInput(name="metadata_payload_key", display_name="Metadata Payload Key", value="metadata", advanced=True), | |
MultilineInput(name="search_query", display_name="Search Query"), | |
DataInput( | |
name="ingest_data", | |
display_name="Ingest Data", | |
is_list=True, | |
), | |
HandleInput(name="embedding", display_name="Embedding", input_types=["Embeddings"]), | |
IntInput( | |
name="number_of_results", | |
display_name="Number of Results", | |
info="Number of results to return.", | |
value=4, | |
advanced=True, | |
), | |
] | |
def build_vector_store(self) -> Qdrant: | |
qdrant_kwargs = { | |
"collection_name": self.collection_name, | |
"content_payload_key": self.content_payload_key, | |
"metadata_payload_key": self.metadata_payload_key, | |
} | |
server_kwargs = { | |
"host": self.host or None, | |
"port": int(self.port), # Ensure port is an integer | |
"grpc_port": int(self.grpc_port), # Ensure grpc_port is an integer | |
"api_key": self.api_key, | |
"prefix": self.prefix, | |
# Ensure timeout is an integer | |
"timeout": int(self.timeout) if self.timeout else None, | |
"path": self.path or None, | |
"url": self.url or None, | |
} | |
server_kwargs = {k: v for k, v in server_kwargs.items() if v is not None} | |
documents = [] | |
for _input in self.ingest_data or []: | |
if isinstance(_input, Data): | |
documents.append(_input.to_lc_document()) | |
else: | |
documents.append(_input) | |
if not isinstance(self.embedding, Embeddings): | |
msg = "Invalid embedding object" | |
raise TypeError(msg) | |
if documents: | |
qdrant = Qdrant.from_documents(documents, embedding=self.embedding, **qdrant_kwargs, **server_kwargs) | |
else: | |
from qdrant_client import QdrantClient | |
client = QdrantClient(**server_kwargs) | |
qdrant = Qdrant(embeddings=self.embedding, client=client, **qdrant_kwargs) | |
return qdrant | |
def search_documents(self) -> list[Data]: | |
vector_store = self.build_vector_store() | |
if self.search_query and isinstance(self.search_query, str) and self.search_query.strip(): | |
docs = vector_store.similarity_search( | |
query=self.search_query, | |
k=self.number_of_results, | |
) | |
data = docs_to_data(docs) | |
self.status = data | |
return data | |
return [] | |