Tai Truong
fix readme
d202ada
from langflow.base.vectorstores.model import LCVectorStoreComponent, check_cached_vector_store
from langflow.helpers.data import docs_to_data
from langflow.io import (
BoolInput,
DataInput,
DictInput,
DropdownInput,
FloatInput,
HandleInput,
IntInput,
MultilineInput,
SecretStrInput,
StrInput,
)
from langflow.schema import Data
class MilvusVectorStoreComponent(LCVectorStoreComponent):
"""Milvus vector store with search capabilities."""
display_name: str = "Milvus"
description: str = "Milvus vector store with search capabilities"
documentation = "https://python.langchain.com/docs/integrations/vectorstores/milvus"
name = "Milvus"
icon = "Milvus"
inputs = [
StrInput(name="collection_name", display_name="Collection Name", value="langflow"),
StrInput(name="collection_description", display_name="Collection Description", value=""),
StrInput(
name="uri",
display_name="Connection URI",
value="http://localhost:19530",
),
SecretStrInput(
name="password",
display_name="Token",
value="",
info="Ignore this field if no token is required to make connection.",
),
DictInput(name="connection_args", display_name="Other Connection Arguments", advanced=True),
StrInput(name="primary_field", display_name="Primary Field Name", value="pk"),
StrInput(name="text_field", display_name="Text Field Name", value="text"),
StrInput(name="vector_field", display_name="Vector Field Name", value="vector"),
DropdownInput(
name="consistency_level",
display_name="Consistencey Level",
options=["Bounded", "Session", "Strong", "Eventual"],
value="Session",
advanced=True,
),
DictInput(name="index_params", display_name="Index Parameters", advanced=True),
DictInput(name="search_params", display_name="Search Parameters", advanced=True),
BoolInput(name="drop_old", display_name="Drop Old Collection", value=False, advanced=True),
FloatInput(name="timeout", display_name="Timeout", advanced=True),
MultilineInput(name="search_query", display_name="Search Query"),
DataInput(
name="ingest_data",
display_name="Ingest Data",
is_list=True,
),
HandleInput(name="embedding", display_name="Embedding", input_types=["Embeddings"]),
IntInput(
name="number_of_results",
display_name="Number of Results",
info="Number of results to return.",
value=4,
advanced=True,
),
]
@check_cached_vector_store
def build_vector_store(self):
try:
from langchain_milvus.vectorstores import Milvus as LangchainMilvus
except ImportError as e:
msg = "Could not import Milvus integration package. Please install it with `pip install langchain-milvus`."
raise ImportError(msg) from e
self.connection_args.update(uri=self.uri, token=self.password)
milvus_store = LangchainMilvus(
embedding_function=self.embedding,
collection_name=self.collection_name,
collection_description=self.collection_description,
connection_args=self.connection_args,
consistency_level=self.consistency_level,
index_params=self.index_params,
search_params=self.search_params,
drop_old=self.drop_old,
auto_id=True,
primary_field=self.primary_field,
text_field=self.text_field,
vector_field=self.vector_field,
timeout=self.timeout,
)
documents = []
for _input in self.ingest_data or []:
if isinstance(_input, Data):
documents.append(_input.to_lc_document())
else:
documents.append(_input)
if documents:
milvus_store.add_documents(documents)
return milvus_store
def search_documents(self) -> list[Data]:
vector_store = self.build_vector_store()
if self.search_query and isinstance(self.search_query, str) and self.search_query.strip():
docs = vector_store.similarity_search(
query=self.search_query,
k=self.number_of_results,
)
data = docs_to_data(docs)
self.status = data
return data
return []