Spaces:
Running
Running
from langchain_community.vectorstores import FAISS | |
from loguru import logger | |
from langflow.base.vectorstores.model import LCVectorStoreComponent, check_cached_vector_store | |
from langflow.helpers.data import docs_to_data | |
from langflow.io import BoolInput, DataInput, HandleInput, IntInput, MultilineInput, StrInput | |
from langflow.schema import Data | |
class FaissVectorStoreComponent(LCVectorStoreComponent): | |
"""FAISS Vector Store with search capabilities.""" | |
display_name: str = "FAISS" | |
description: str = "FAISS Vector Store with search capabilities" | |
documentation = "https://python.langchain.com/docs/modules/data_connection/vectorstores/integrations/faiss" | |
name = "FAISS" | |
icon = "FAISS" | |
inputs = [ | |
StrInput( | |
name="index_name", | |
display_name="Index Name", | |
value="langflow_index", | |
), | |
StrInput( | |
name="persist_directory", | |
display_name="Persist Directory", | |
info="Path to save the FAISS index. It will be relative to where Langflow is running.", | |
), | |
MultilineInput( | |
name="search_query", | |
display_name="Search Query", | |
), | |
DataInput( | |
name="ingest_data", | |
display_name="Ingest Data", | |
is_list=True, | |
), | |
BoolInput( | |
name="allow_dangerous_deserialization", | |
display_name="Allow Dangerous Deserialization", | |
info="Set to True to allow loading pickle files from untrusted sources. " | |
"Only enable this if you trust the source of the data.", | |
advanced=True, | |
value=True, | |
), | |
HandleInput(name="embedding", display_name="Embedding", input_types=["Embeddings"]), | |
IntInput( | |
name="number_of_results", | |
display_name="Number of Results", | |
info="Number of results to return.", | |
advanced=True, | |
value=4, | |
), | |
] | |
def build_vector_store(self) -> FAISS: | |
"""Builds the FAISS object.""" | |
if not self.persist_directory: | |
msg = "Folder path is required to save the FAISS index." | |
raise ValueError(msg) | |
path = self.resolve_path(self.persist_directory) | |
documents = [] | |
for _input in self.ingest_data or []: | |
if isinstance(_input, Data): | |
documents.append(_input.to_lc_document()) | |
else: | |
documents.append(_input) | |
faiss = FAISS.from_documents(documents=documents, embedding=self.embedding) | |
faiss.save_local(str(path), self.index_name) | |
return faiss | |
def search_documents(self) -> list[Data]: | |
"""Search for documents in the FAISS vector store.""" | |
if not self.persist_directory: | |
msg = "Folder path is required to load the FAISS index." | |
raise ValueError(msg) | |
path = self.resolve_path(self.persist_directory) | |
vector_store = FAISS.load_local( | |
folder_path=path, | |
embeddings=self.embedding, | |
index_name=self.index_name, | |
allow_dangerous_deserialization=self.allow_dangerous_deserialization, | |
) | |
if not vector_store: | |
msg = "Failed to load the FAISS index." | |
raise ValueError(msg) | |
logger.debug(f"Search input: {self.search_query}") | |
logger.debug(f"Number of results: {self.number_of_results}") | |
if self.search_query and isinstance(self.search_query, str) and self.search_query.strip(): | |
docs = vector_store.similarity_search( | |
query=self.search_query, | |
k=self.number_of_results, | |
) | |
logger.debug(f"Retrieved documents: {len(docs)}") | |
data = docs_to_data(docs) | |
logger.debug(f"Converted documents to data: {len(data)}") | |
logger.debug(data) | |
return data # Return the search results data | |
logger.debug("No search input provided. Skipping search.") | |
return [] | |