Spaces:
Running
Running
import urllib | |
from http import HTTPStatus | |
from typing import Any | |
import requests | |
from langchain.pydantic_v1 import BaseModel, Field, create_model | |
from langchain_core.tools import StructuredTool | |
from langflow.base.langchain_utilities.model import LCToolComponent | |
from langflow.io import DictInput, IntInput, SecretStrInput, StrInput | |
from langflow.schema import Data | |
class AstraDBCQLToolComponent(LCToolComponent): | |
display_name: str = "Astra DB CQL" | |
description: str = "Create a tool to get transactional data from DataStax Astra DB CQL Table" | |
documentation: str = "https://docs.langflow.org/Components/components-tools#astra-db-cql-tool" | |
icon: str = "AstraDB" | |
inputs = [ | |
StrInput(name="tool_name", display_name="Tool Name", info="The name of the tool.", required=True), | |
StrInput( | |
name="tool_description", | |
display_name="Tool Description", | |
info="The tool description to be passed to the model.", | |
required=True, | |
), | |
StrInput( | |
name="keyspace", | |
display_name="Keyspace", | |
value="default_keyspace", | |
info="The keyspace name within Astra DB where the data is stored.", | |
required=True, | |
advanced=True, | |
), | |
StrInput( | |
name="table_name", | |
display_name="Table Name", | |
info="The name of the table within Astra DB where the data is stored.", | |
required=True, | |
), | |
SecretStrInput( | |
name="token", | |
display_name="Astra DB Application Token", | |
info="Authentication token for accessing Astra DB.", | |
value="ASTRA_DB_APPLICATION_TOKEN", | |
required=True, | |
), | |
StrInput( | |
name="api_endpoint", | |
display_name="API Endpoint", | |
info="API endpoint URL for the Astra DB service.", | |
value="ASTRA_DB_API_ENDPOINT", | |
required=True, | |
), | |
StrInput( | |
name="projection_fields", | |
display_name="Projection fields", | |
info="Attributes to return separated by comma.", | |
required=True, | |
value="*", | |
advanced=True, | |
), | |
DictInput( | |
name="partition_keys", | |
display_name="Partition Keys", | |
is_list=True, | |
info="Field name and description to the model", | |
required=True, | |
), | |
DictInput( | |
name="clustering_keys", | |
display_name="Clustering Keys", | |
is_list=True, | |
info="Field name and description to the model", | |
), | |
DictInput( | |
name="static_filters", | |
display_name="Static Filters", | |
is_list=True, | |
advanced=True, | |
info="Field name and value. When filled, it will not be generated by the LLM.", | |
), | |
IntInput( | |
name="number_of_results", | |
display_name="Number of Results", | |
info="Number of results to return.", | |
advanced=True, | |
value=5, | |
), | |
] | |
def astra_rest(self, args): | |
headers = {"Accept": "application/json", "X-Cassandra-Token": f"{self.token}"} | |
astra_url = f"{self.api_endpoint}/api/rest/v2/keyspaces/{self.keyspace}/{self.table_name}/" | |
key = [] | |
# Partition keys are mandatory | |
for k in self.partition_keys: | |
if k in args: | |
key.append(args[k]) | |
elif self.static_filters[k] is not None: | |
key.append(self.static_filters[k]) | |
else: | |
# TO-DO: Raise error - Missing information | |
key.append("none") | |
# Clustering keys are optional | |
for k in self.clustering_keys: | |
if k in args: | |
key.append(args[k]) | |
elif self.static_filters[k] is not None: | |
key.append(self.static_filters[k]) | |
url = f'{astra_url}{"/".join(key)}?page-size={self.number_of_results}' | |
if self.projection_fields != "*": | |
url += f'&fields={urllib.parse.quote(self.projection_fields.replace(" ", ""))}' | |
res = requests.request("GET", url=url, headers=headers, timeout=10) | |
if int(res.status_code) >= HTTPStatus.BAD_REQUEST: | |
return res.text | |
try: | |
res_data = res.json() | |
return res_data["data"] | |
except ValueError: | |
return res.status_code | |
def create_args_schema(self) -> dict[str, BaseModel]: | |
args: dict[str, tuple[Any, Field]] = {} | |
for key in self.partition_keys: | |
# Partition keys are mandatory is it doesn't have a static filter | |
if key not in self.static_filters: | |
args[key] = (str, Field(description=self.partition_keys[key])) | |
for key in self.clustering_keys: | |
# Partition keys are mandatory if has the exclamation mark and doesn't have a static filter | |
if key not in self.static_filters: | |
if key.startswith("!"): # Mandatory | |
args[key[1:]] = (str, Field(description=self.clustering_keys[key])) | |
else: # Optional | |
args[key] = (str | None, Field(description=self.clustering_keys[key], default=None)) | |
model = create_model("ToolInput", **args, __base__=BaseModel) | |
return {"ToolInput": model} | |
def build_tool(self) -> StructuredTool: | |
"""Builds a Astra DB CQL Table tool. | |
Args: | |
name (str, optional): The name of the tool. | |
Returns: | |
Tool: The built AstraDB tool. | |
""" | |
schema_dict = self.create_args_schema() | |
return StructuredTool.from_function( | |
name=self.tool_name, | |
args_schema=schema_dict["ToolInput"], | |
description=self.tool_description, | |
func=self.run_model, | |
return_direct=False, | |
) | |
def projection_args(self, input_str: str) -> dict: | |
elements = input_str.split(",") | |
result = {} | |
for element in elements: | |
if element.startswith("!"): | |
result[element[1:]] = False | |
else: | |
result[element] = True | |
return result | |
def run_model(self, **args) -> Data | list[Data]: | |
results = self.astra_rest(args) | |
data: list[Data] = [Data(data=doc) for doc in results] | |
self.status = data | |
return results | |