Tai Truong
fix readme
d202ada
import urllib
from http import HTTPStatus
from typing import Any
import requests
from langchain.pydantic_v1 import BaseModel, Field, create_model
from langchain_core.tools import StructuredTool
from langflow.base.langchain_utilities.model import LCToolComponent
from langflow.io import DictInput, IntInput, SecretStrInput, StrInput
from langflow.schema import Data
class AstraDBCQLToolComponent(LCToolComponent):
display_name: str = "Astra DB CQL"
description: str = "Create a tool to get transactional data from DataStax Astra DB CQL Table"
documentation: str = "https://docs.langflow.org/Components/components-tools#astra-db-cql-tool"
icon: str = "AstraDB"
inputs = [
StrInput(name="tool_name", display_name="Tool Name", info="The name of the tool.", required=True),
StrInput(
name="tool_description",
display_name="Tool Description",
info="The tool description to be passed to the model.",
required=True,
),
StrInput(
name="keyspace",
display_name="Keyspace",
value="default_keyspace",
info="The keyspace name within Astra DB where the data is stored.",
required=True,
advanced=True,
),
StrInput(
name="table_name",
display_name="Table Name",
info="The name of the table within Astra DB where the data is stored.",
required=True,
),
SecretStrInput(
name="token",
display_name="Astra DB Application Token",
info="Authentication token for accessing Astra DB.",
value="ASTRA_DB_APPLICATION_TOKEN",
required=True,
),
StrInput(
name="api_endpoint",
display_name="API Endpoint",
info="API endpoint URL for the Astra DB service.",
value="ASTRA_DB_API_ENDPOINT",
required=True,
),
StrInput(
name="projection_fields",
display_name="Projection fields",
info="Attributes to return separated by comma.",
required=True,
value="*",
advanced=True,
),
DictInput(
name="partition_keys",
display_name="Partition Keys",
is_list=True,
info="Field name and description to the model",
required=True,
),
DictInput(
name="clustering_keys",
display_name="Clustering Keys",
is_list=True,
info="Field name and description to the model",
),
DictInput(
name="static_filters",
display_name="Static Filters",
is_list=True,
advanced=True,
info="Field name and value. When filled, it will not be generated by the LLM.",
),
IntInput(
name="number_of_results",
display_name="Number of Results",
info="Number of results to return.",
advanced=True,
value=5,
),
]
def astra_rest(self, args):
headers = {"Accept": "application/json", "X-Cassandra-Token": f"{self.token}"}
astra_url = f"{self.api_endpoint}/api/rest/v2/keyspaces/{self.keyspace}/{self.table_name}/"
key = []
# Partition keys are mandatory
for k in self.partition_keys:
if k in args:
key.append(args[k])
elif self.static_filters[k] is not None:
key.append(self.static_filters[k])
else:
# TO-DO: Raise error - Missing information
key.append("none")
# Clustering keys are optional
for k in self.clustering_keys:
if k in args:
key.append(args[k])
elif self.static_filters[k] is not None:
key.append(self.static_filters[k])
url = f'{astra_url}{"/".join(key)}?page-size={self.number_of_results}'
if self.projection_fields != "*":
url += f'&fields={urllib.parse.quote(self.projection_fields.replace(" ", ""))}'
res = requests.request("GET", url=url, headers=headers, timeout=10)
if int(res.status_code) >= HTTPStatus.BAD_REQUEST:
return res.text
try:
res_data = res.json()
return res_data["data"]
except ValueError:
return res.status_code
def create_args_schema(self) -> dict[str, BaseModel]:
args: dict[str, tuple[Any, Field]] = {}
for key in self.partition_keys:
# Partition keys are mandatory is it doesn't have a static filter
if key not in self.static_filters:
args[key] = (str, Field(description=self.partition_keys[key]))
for key in self.clustering_keys:
# Partition keys are mandatory if has the exclamation mark and doesn't have a static filter
if key not in self.static_filters:
if key.startswith("!"): # Mandatory
args[key[1:]] = (str, Field(description=self.clustering_keys[key]))
else: # Optional
args[key] = (str | None, Field(description=self.clustering_keys[key], default=None))
model = create_model("ToolInput", **args, __base__=BaseModel)
return {"ToolInput": model}
def build_tool(self) -> StructuredTool:
"""Builds a Astra DB CQL Table tool.
Args:
name (str, optional): The name of the tool.
Returns:
Tool: The built AstraDB tool.
"""
schema_dict = self.create_args_schema()
return StructuredTool.from_function(
name=self.tool_name,
args_schema=schema_dict["ToolInput"],
description=self.tool_description,
func=self.run_model,
return_direct=False,
)
def projection_args(self, input_str: str) -> dict:
elements = input_str.split(",")
result = {}
for element in elements:
if element.startswith("!"):
result[element[1:]] = False
else:
result[element] = True
return result
def run_model(self, **args) -> Data | list[Data]:
results = self.astra_rest(args)
data: list[Data] = [Data(data=doc) for doc in results]
self.status = data
return results