Spaces:
Running
Running
from typing import Any, cast | |
from langchain.retrievers import ContextualCompressionRetriever | |
from langflow.base.vectorstores.model import ( | |
LCVectorStoreComponent, | |
check_cached_vector_store, | |
) | |
from langflow.field_typing import Retriever, VectorStore | |
from langflow.io import ( | |
DropdownInput, | |
HandleInput, | |
MultilineInput, | |
SecretStrInput, | |
StrInput, | |
) | |
from langflow.schema import Data | |
from langflow.schema.dotdict import dotdict | |
from langflow.template.field.base import Output | |
class NvidiaRerankComponent(LCVectorStoreComponent): | |
display_name = "NVIDIA Rerank" | |
description = "Rerank documents using the NVIDIA API and a retriever." | |
icon = "NVIDIA" | |
legacy: bool = True | |
inputs = [ | |
MultilineInput( | |
name="search_query", | |
display_name="Search Query", | |
), | |
StrInput( | |
name="base_url", | |
display_name="Base URL", | |
value="https://integrate.api.nvidia.com/v1", | |
refresh_button=True, | |
info="The base URL of the NVIDIA API. Defaults to https://integrate.api.nvidia.com/v1.", | |
), | |
DropdownInput( | |
name="model", | |
display_name="Model", | |
options=["nv-rerank-qa-mistral-4b:1"], | |
value="nv-rerank-qa-mistral-4b:1", | |
), | |
SecretStrInput(name="api_key", display_name="API Key"), | |
HandleInput(name="retriever", display_name="Retriever", input_types=["Retriever"]), | |
] | |
outputs = [ | |
Output( | |
display_name="Retriever", | |
name="base_retriever", | |
method="build_base_retriever", | |
), | |
Output( | |
display_name="Search Results", | |
name="search_results", | |
method="search_documents", | |
), | |
] | |
def update_build_config(self, build_config: dotdict, field_value: Any, field_name: str | None = None): | |
if field_name == "base_url" and field_value: | |
try: | |
build_model = self.build_model() | |
ids = [model.id for model in build_model.available_models] | |
build_config["model"]["options"] = ids | |
build_config["model"]["value"] = ids[0] | |
except Exception as e: | |
msg = f"Error getting model names: {e}" | |
raise ValueError(msg) from e | |
return build_config | |
def build_model(self): | |
try: | |
from langchain_nvidia_ai_endpoints import NVIDIARerank | |
except ImportError as e: | |
msg = "Please install langchain-nvidia-ai-endpoints to use the NVIDIA model." | |
raise ImportError(msg) from e | |
return NVIDIARerank(api_key=self.api_key, model=self.model, base_url=self.base_url) | |
def build_base_retriever(self) -> Retriever: # type: ignore[type-var] | |
nvidia_reranker = self.build_model() | |
retriever = ContextualCompressionRetriever(base_compressor=nvidia_reranker, base_retriever=self.retriever) | |
return cast("Retriever", retriever) | |
async def search_documents(self) -> list[Data]: # type: ignore[override] | |
retriever = self.build_base_retriever() | |
documents = await retriever.ainvoke(self.search_query, config={"callbacks": self.get_langchain_callbacks()}) | |
data = self.to_data(documents) | |
self.status = data | |
return data | |
def build_vector_store(self) -> VectorStore: | |
msg = "NVIDIA Rerank does not support vector stores." | |
raise NotImplementedError(msg) | |