Tai Truong
fix readme
d202ada
from typing import cast
from langflow.base.models.model import LCModelComponent
from langflow.field_typing import LanguageModel
from langflow.inputs import MessageTextInput
from langflow.inputs.inputs import HandleInput
from langflow.io import BoolInput, FileInput, FloatInput, IntInput, StrInput
class ChatVertexAIComponent(LCModelComponent):
display_name = "Vertex AI"
description = "Generate text using Vertex AI LLMs."
icon = "VertexAI"
name = "VertexAiModel"
inputs = [
*LCModelComponent._base_inputs,
FileInput(
name="credentials",
display_name="Credentials",
info="JSON credentials file. Leave empty to fallback to environment variables",
file_types=["json"],
),
MessageTextInput(name="model_name", display_name="Model Name", value="gemini-1.5-pro"),
StrInput(name="project", display_name="Project", info="The project ID.", advanced=True),
StrInput(name="location", display_name="Location", value="us-central1", advanced=True),
IntInput(name="max_output_tokens", display_name="Max Output Tokens", advanced=True),
IntInput(name="max_retries", display_name="Max Retries", value=1, advanced=True),
FloatInput(name="temperature", value=0.0, display_name="Temperature"),
IntInput(name="top_k", display_name="Top K", advanced=True),
FloatInput(name="top_p", display_name="Top P", value=0.95, advanced=True),
BoolInput(name="verbose", display_name="Verbose", value=False, advanced=True),
HandleInput(
name="output_parser",
display_name="Output Parser",
info="The parser to use to parse the output of the model",
advanced=True,
input_types=["OutputParser"],
),
]
def build_model(self) -> LanguageModel:
try:
from langchain_google_vertexai import ChatVertexAI
except ImportError as e:
msg = "Please install the langchain-google-vertexai package to use the VertexAIEmbeddings component."
raise ImportError(msg) from e
location = self.location or None
if self.credentials:
from google.cloud import aiplatform
from google.oauth2 import service_account
credentials = service_account.Credentials.from_service_account_file(self.credentials)
project = self.project or credentials.project_id
# ChatVertexAI sometimes skip manual credentials initialization
aiplatform.init(
project=project,
location=location,
credentials=credentials,
)
else:
project = self.project or None
credentials = None
return cast(
"LanguageModel",
ChatVertexAI(
credentials=credentials,
location=location,
project=project,
max_output_tokens=self.max_output_tokens or None,
max_retries=self.max_retries,
model_name=self.model_name,
temperature=self.temperature,
top_k=self.top_k or None,
top_p=self.top_p,
verbose=self.verbose,
),
)