Spaces:
Running
Running
from typing import TYPE_CHECKING, Any | |
from typing_extensions import override | |
from langflow.base.flow_processing.utils import build_data_from_run_outputs | |
from langflow.custom import Component | |
from langflow.io import DropdownInput, MessageTextInput, NestedDictInput, Output | |
from langflow.schema import Data, dotdict | |
if TYPE_CHECKING: | |
from langflow.graph.schema import RunOutputs | |
class RunFlowComponent(Component): | |
display_name = "Run Flow" | |
description = "A component to run a flow." | |
name = "RunFlow" | |
legacy: bool = True | |
icon = "workflow" | |
def get_flow_names(self) -> list[str]: | |
flow_data = self.list_flows() | |
return [flow_data.data["name"] for flow_data in flow_data] | |
def update_build_config(self, build_config: dotdict, field_value: Any, field_name: str | None = None): | |
if field_name == "flow_name": | |
build_config["flow_name"]["options"] = self.get_flow_names() | |
return build_config | |
inputs = [ | |
MessageTextInput( | |
name="input_value", | |
display_name="Input Value", | |
info="The input value to be processed by the flow.", | |
), | |
DropdownInput( | |
name="flow_name", | |
display_name="Flow Name", | |
info="The name of the flow to run.", | |
options=[], | |
refresh_button=True, | |
), | |
NestedDictInput( | |
name="tweaks", | |
display_name="Tweaks", | |
info="Tweaks to apply to the flow.", | |
), | |
] | |
outputs = [ | |
Output(display_name="Run Outputs", name="run_outputs", method="generate_results"), | |
] | |
async def generate_results(self) -> list[Data]: | |
if "flow_name" not in self._attributes or not self._attributes["flow_name"]: | |
msg = "Flow name is required" | |
raise ValueError(msg) | |
flow_name = self._attributes["flow_name"] | |
results: list[RunOutputs | None] = await self.run_flow( | |
inputs={"input_value": self.input_value}, flow_name=flow_name, tweaks=self.tweaks | |
) | |
if isinstance(results, list): | |
data = [] | |
for result in results: | |
if result: | |
data.extend(build_data_from_run_outputs(result)) | |
else: | |
data = build_data_from_run_outputs()(results) | |
self.status = data | |
return data | |