Spaces:
Running
Running
from langchain.chains import LLMMathChain | |
from langflow.base.chains.model import LCChainComponent | |
from langflow.field_typing import Message | |
from langflow.inputs import HandleInput, MultilineInput | |
from langflow.template import Output | |
class LLMMathChainComponent(LCChainComponent): | |
display_name = "LLMMathChain" | |
description = "Chain that interprets a prompt and executes python code to do math." | |
documentation = "https://python.langchain.com/docs/modules/chains/additional/llm_math" | |
name = "LLMMathChain" | |
legacy: bool = True | |
icon = "LangChain" | |
inputs = [ | |
MultilineInput( | |
name="input_value", | |
display_name="Input", | |
info="The input value to pass to the chain.", | |
required=True, | |
), | |
HandleInput( | |
name="llm", | |
display_name="Language Model", | |
input_types=["LanguageModel"], | |
required=True, | |
), | |
] | |
outputs = [Output(display_name="Text", name="text", method="invoke_chain")] | |
def invoke_chain(self) -> Message: | |
chain = LLMMathChain.from_llm(llm=self.llm) | |
response = chain.invoke( | |
{chain.input_key: self.input_value}, | |
config={"callbacks": self.get_langchain_callbacks()}, | |
) | |
result = response.get(chain.output_key, "") | |
result = str(result) | |
self.status = result | |
return Message(text=result) | |