Spaces:
Running
Running
from typing import cast | |
from langflow.base.models.model import LCModelComponent | |
from langflow.field_typing import LanguageModel | |
from langflow.inputs import MessageTextInput | |
from langflow.inputs.inputs import HandleInput | |
from langflow.io import BoolInput, FileInput, FloatInput, IntInput, StrInput | |
class ChatVertexAIComponent(LCModelComponent): | |
display_name = "Vertex AI" | |
description = "Generate text using Vertex AI LLMs." | |
icon = "VertexAI" | |
name = "VertexAiModel" | |
inputs = [ | |
*LCModelComponent._base_inputs, | |
FileInput( | |
name="credentials", | |
display_name="Credentials", | |
info="JSON credentials file. Leave empty to fallback to environment variables", | |
file_types=["json"], | |
), | |
MessageTextInput(name="model_name", display_name="Model Name", value="gemini-1.5-pro"), | |
StrInput(name="project", display_name="Project", info="The project ID.", advanced=True), | |
StrInput(name="location", display_name="Location", value="us-central1", advanced=True), | |
IntInput(name="max_output_tokens", display_name="Max Output Tokens", advanced=True), | |
IntInput(name="max_retries", display_name="Max Retries", value=1, advanced=True), | |
FloatInput(name="temperature", value=0.0, display_name="Temperature"), | |
IntInput(name="top_k", display_name="Top K", advanced=True), | |
FloatInput(name="top_p", display_name="Top P", value=0.95, advanced=True), | |
BoolInput(name="verbose", display_name="Verbose", value=False, advanced=True), | |
HandleInput( | |
name="output_parser", | |
display_name="Output Parser", | |
info="The parser to use to parse the output of the model", | |
advanced=True, | |
input_types=["OutputParser"], | |
), | |
] | |
def build_model(self) -> LanguageModel: | |
try: | |
from langchain_google_vertexai import ChatVertexAI | |
except ImportError as e: | |
msg = "Please install the langchain-google-vertexai package to use the VertexAIEmbeddings component." | |
raise ImportError(msg) from e | |
location = self.location or None | |
if self.credentials: | |
from google.cloud import aiplatform | |
from google.oauth2 import service_account | |
credentials = service_account.Credentials.from_service_account_file(self.credentials) | |
project = self.project or credentials.project_id | |
# ChatVertexAI sometimes skip manual credentials initialization | |
aiplatform.init( | |
project=project, | |
location=location, | |
credentials=credentials, | |
) | |
else: | |
project = self.project or None | |
credentials = None | |
return cast( | |
"LanguageModel", | |
ChatVertexAI( | |
credentials=credentials, | |
location=location, | |
project=project, | |
max_output_tokens=self.max_output_tokens or None, | |
max_retries=self.max_retries, | |
model_name=self.model_name, | |
temperature=self.temperature, | |
top_k=self.top_k or None, | |
top_p=self.top_p, | |
verbose=self.verbose, | |
), | |
) | |