Tai Truong
fix readme
d202ada
raw
history blame
3.26 kB
from langchain_community.chat_models import ChatPerplexity
from pydantic.v1 import SecretStr
from langflow.base.models.model import LCModelComponent
from langflow.field_typing import LanguageModel
from langflow.inputs.inputs import HandleInput
from langflow.io import DropdownInput, FloatInput, IntInput, SecretStrInput
class PerplexityComponent(LCModelComponent):
display_name = "Perplexity"
description = "Generate text using Perplexity LLMs."
documentation = "https://python.langchain.com/v0.2/docs/integrations/chat/perplexity/"
icon = "Perplexity"
name = "PerplexityModel"
inputs = [
*LCModelComponent._base_inputs,
DropdownInput(
name="model_name",
display_name="Model Name",
advanced=False,
options=[
"llama-3.1-sonar-small-128k-online",
"llama-3.1-sonar-large-128k-online",
"llama-3.1-sonar-huge-128k-online",
"llama-3.1-sonar-small-128k-chat",
"llama-3.1-sonar-large-128k-chat",
"llama-3.1-8b-instruct",
"llama-3.1-70b-instruct",
],
value="llama-3.1-sonar-small-128k-online",
),
IntInput(
name="max_output_tokens", display_name="Max Output Tokens", info="The maximum number of tokens to generate."
),
SecretStrInput(
name="api_key",
display_name="Perplexity API Key",
info="The Perplexity API Key to use for the Perplexity model.",
advanced=False,
),
FloatInput(name="temperature", display_name="Temperature", value=0.75),
FloatInput(
name="top_p",
display_name="Top P",
info="The maximum cumulative probability of tokens to consider when sampling.",
advanced=True,
),
IntInput(
name="n",
display_name="N",
info="Number of chat completions to generate for each prompt. "
"Note that the API may not return the full n completions if duplicates are generated.",
advanced=True,
),
IntInput(
name="top_k",
display_name="Top K",
info="Decode using top-k sampling: consider the set of top_k most probable tokens. Must be positive.",
advanced=True,
),
HandleInput(
name="output_parser",
display_name="Output Parser",
info="The parser to use to parse the output of the model",
advanced=True,
input_types=["OutputParser"],
),
]
def build_model(self) -> LanguageModel: # type: ignore[type-var]
api_key = SecretStr(self.api_key).get_secret_value()
temperature = self.temperature
model = self.model_name
max_output_tokens = self.max_output_tokens
top_k = self.top_k
top_p = self.top_p
n = self.n
return ChatPerplexity(
model=model,
temperature=temperature or 0.75,
pplx_api_key=api_key,
top_k=top_k or None,
top_p=top_p or None,
n=n or 1,
max_output_tokens=max_output_tokens,
)