Tai Truong
fix readme
d202ada
raw
history blame
5 kB
import operator
from functools import reduce
from langchain_openai import ChatOpenAI
from pydantic.v1 import SecretStr
from langflow.base.models.model import LCModelComponent
from langflow.base.models.openai_constants import OPENAI_MODEL_NAMES
from langflow.field_typing import LanguageModel
from langflow.field_typing.range_spec import RangeSpec
from langflow.inputs import BoolInput, DictInput, DropdownInput, IntInput, SecretStrInput, SliderInput, StrInput
from langflow.inputs.inputs import HandleInput
class OpenAIModelComponent(LCModelComponent):
display_name = "OpenAI"
description = "Generates text using OpenAI LLMs."
icon = "OpenAI"
name = "OpenAIModel"
inputs = [
*LCModelComponent._base_inputs,
IntInput(
name="max_tokens",
display_name="Max Tokens",
advanced=True,
info="The maximum number of tokens to generate. Set to 0 for unlimited tokens.",
range_spec=RangeSpec(min=0, max=128000),
),
DictInput(
name="model_kwargs",
display_name="Model Kwargs",
advanced=True,
info="Additional keyword arguments to pass to the model.",
),
BoolInput(
name="json_mode",
display_name="JSON Mode",
advanced=True,
info="If True, it will output JSON regardless of passing a schema.",
),
DictInput(
name="output_schema",
is_list=True,
display_name="Schema",
advanced=True,
info="The schema for the Output of the model. "
"You must pass the word JSON in the prompt. "
"If left blank, JSON mode will be disabled. [DEPRECATED]",
),
DropdownInput(
name="model_name",
display_name="Model Name",
advanced=False,
options=OPENAI_MODEL_NAMES,
value=OPENAI_MODEL_NAMES[0],
),
StrInput(
name="openai_api_base",
display_name="OpenAI API Base",
advanced=True,
info="The base URL of the OpenAI API. "
"Defaults to https://api.openai.com/v1. "
"You can change this to use other APIs like JinaChat, LocalAI and Prem.",
),
SecretStrInput(
name="api_key",
display_name="OpenAI API Key",
info="The OpenAI API Key to use for the OpenAI model.",
advanced=False,
value="OPENAI_API_KEY",
),
SliderInput(
name="temperature", display_name="Temperature", value=0.1, range_spec=RangeSpec(min=0, max=2, step=0.01)
),
IntInput(
name="seed",
display_name="Seed",
info="The seed controls the reproducibility of the job.",
advanced=True,
value=1,
),
HandleInput(
name="output_parser",
display_name="Output Parser",
info="The parser to use to parse the output of the model",
advanced=True,
input_types=["OutputParser"],
),
]
def build_model(self) -> LanguageModel: # type: ignore[type-var]
# self.output_schema is a list of dictionaries
# let's convert it to a dictionary
output_schema_dict: dict[str, str] = reduce(operator.ior, self.output_schema or {}, {})
openai_api_key = self.api_key
temperature = self.temperature
model_name: str = self.model_name
max_tokens = self.max_tokens
model_kwargs = self.model_kwargs or {}
openai_api_base = self.openai_api_base or "https://api.openai.com/v1"
json_mode = bool(output_schema_dict) or self.json_mode
seed = self.seed
api_key = SecretStr(openai_api_key).get_secret_value() if openai_api_key else None
output = ChatOpenAI(
max_tokens=max_tokens or None,
model_kwargs=model_kwargs,
model=model_name,
base_url=openai_api_base,
api_key=api_key,
temperature=temperature if temperature is not None else 0.1,
seed=seed,
)
if json_mode:
if output_schema_dict:
output = output.with_structured_output(schema=output_schema_dict, method="json_mode")
else:
output = output.bind(response_format={"type": "json_object"})
return output
def _get_exception_message(self, e: Exception):
"""Get a message from an OpenAI exception.
Args:
e (Exception): The exception to get the message from.
Returns:
str: The message from the exception.
"""
try:
from openai import BadRequestError
except ImportError:
return None
if isinstance(e, BadRequestError):
message = e.body.get("message")
if message:
return message
return None