Tai Truong
fix readme
d202ada
raw
history blame
4.48 kB
from crewai import Agent, Task
from langflow.base.agents.crewai.tasks import SequentialTask
from langflow.custom import Component
from langflow.io import BoolInput, DictInput, HandleInput, MultilineInput, Output
class SequentialTaskAgentComponent(Component):
display_name = "Sequential Task Agent"
description = "Creates a CrewAI Task and its associated Agent."
documentation = "https://docs.crewai.com/how-to/LLM-Connections/"
icon = "CrewAI"
inputs = [
# Agent inputs
MultilineInput(name="role", display_name="Role", info="The role of the agent."),
MultilineInput(name="goal", display_name="Goal", info="The objective of the agent."),
MultilineInput(
name="backstory",
display_name="Backstory",
info="The backstory of the agent.",
),
HandleInput(
name="tools",
display_name="Tools",
input_types=["Tool"],
is_list=True,
info="Tools at agent's disposal",
value=[],
),
HandleInput(
name="llm",
display_name="Language Model",
info="Language model that will run the agent.",
input_types=["LanguageModel"],
),
BoolInput(
name="memory",
display_name="Memory",
info="Whether the agent should have memory or not",
advanced=True,
value=True,
),
BoolInput(
name="verbose",
display_name="Verbose",
advanced=True,
value=True,
),
BoolInput(
name="allow_delegation",
display_name="Allow Delegation",
info="Whether the agent is allowed to delegate tasks to other agents.",
value=False,
advanced=True,
),
BoolInput(
name="allow_code_execution",
display_name="Allow Code Execution",
info="Whether the agent is allowed to execute code.",
value=False,
advanced=True,
),
DictInput(
name="agent_kwargs",
display_name="Agent kwargs",
info="Additional kwargs for the agent.",
is_list=True,
advanced=True,
),
# Task inputs
MultilineInput(
name="task_description",
display_name="Task Description",
info="Descriptive text detailing task's purpose and execution.",
),
MultilineInput(
name="expected_output",
display_name="Expected Task Output",
info="Clear definition of expected task outcome.",
),
BoolInput(
name="async_execution",
display_name="Async Execution",
value=False,
advanced=True,
info="Boolean flag indicating asynchronous task execution.",
),
# Chaining input
HandleInput(
name="previous_task",
display_name="Previous Task",
input_types=["SequentialTask"],
info="The previous task in the sequence (for chaining).",
required=False,
),
]
outputs = [
Output(
display_name="Sequential Task",
name="task_output",
method="build_agent_and_task",
),
]
def build_agent_and_task(self) -> list[SequentialTask]:
# Build the agent
agent_kwargs = self.agent_kwargs or {}
agent = Agent(
role=self.role,
goal=self.goal,
backstory=self.backstory,
llm=self.llm,
verbose=self.verbose,
memory=self.memory,
tools=self.tools or [],
allow_delegation=self.allow_delegation,
allow_code_execution=self.allow_code_execution,
**agent_kwargs,
)
# Build the task
task = Task(
description=self.task_description,
expected_output=self.expected_output,
agent=agent,
async_execution=self.async_execution,
)
# If there's a previous task, create a list of tasks
if self.previous_task:
tasks = [*self.previous_task, task] if isinstance(self.previous_task, list) else [self.previous_task, task]
else:
tasks = [task]
self.status = f"Agent: {agent!r}\nTask: {task!r}"
return tasks