File size: 3,716 Bytes
8a8d449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import albumentations as alb
import numpy as np
import cv2


class Erosion(alb.ImageOnlyTransform):
    """
    Apply erosion operation to an image.

    Erosion is a morphological operation that shrinks the white regions in a binary image.

    Args:
        scale (int or tuple/list of int): The scale or range for the size of the erosion kernel.
            If an integer is provided, a square kernel of that size will be used.
            If a tuple or list is provided, it should contain two integers representing the minimum
            and maximum sizes for the erosion kernel.
        always_apply (bool, optional): Whether to always apply this transformation. Default is False.
        p (float, optional): The probability of applying this transformation. Default is 0.5.

    Returns:
        numpy.ndarray: The transformed image.
    """

    def __init__(self, scale, always_apply=False, p=0.5):
        super().__init__(always_apply=always_apply, p=p)
        if type(scale) is tuple or type(scale) is list:
            assert len(scale) == 2
            self.scale = scale
        else:
            self.scale = (scale, scale)

    def apply(self, img, **params):
        kernel = cv2.getStructuringElement(
            cv2.MORPH_ELLIPSE, tuple(np.random.randint(self.scale[0], self.scale[1], 2))
        )
        img = cv2.erode(img, kernel, iterations=1)
        return img


class Dilation(alb.ImageOnlyTransform):
    """
    Apply dilation operation to an image.

    Dilation is a morphological operation that expands the white regions in a binary image.

    Args:
        scale (int or tuple/list of int): The scale or range for the size of the dilation kernel.
            If an integer is provided, a square kernel of that size will be used.
            If a tuple or list is provided, it should contain two integers representing the minimum
            and maximum sizes for the dilation kernel.
        always_apply (bool, optional): Whether to always apply this transformation. Default is False.
        p (float, optional): The probability of applying this transformation. Default is 0.5.

    Returns:
        numpy.ndarray: The transformed image.
    """

    def __init__(self, scale, always_apply=False, p=0.5):
        super().__init__(always_apply=always_apply, p=p)
        if type(scale) is tuple or type(scale) is list:
            assert len(scale) == 2
            self.scale = scale
        else:
            self.scale = (scale, scale)

    def apply(self, img, **params):
        kernel = cv2.getStructuringElement(
            cv2.MORPH_ELLIPSE, tuple(np.random.randint(self.scale[0], self.scale[1], 2))
        )
        img = cv2.dilate(img, kernel, iterations=1)
        return img


class Bitmap(alb.ImageOnlyTransform):
    """
    Apply a bitmap-style transformation to an image.

    This transformation replaces all pixel values below a certain threshold with a specified value.

    Args:
        value (int, optional): The value to replace pixels below the threshold with. Default is 0.
        lower (int, optional): The threshold value below which pixels will be replaced. Default is 200.
        always_apply (bool, optional): Whether to always apply this transformation. Default is False.
        p (float, optional): The probability of applying this transformation. Default is 0.5.

    Returns:
        numpy.ndarray: The transformed image.
    """

    def __init__(self, value=0, lower=200, always_apply=False, p=0.5):
        super().__init__(always_apply=always_apply, p=p)
        self.lower = lower
        self.value = value

    def apply(self, img, **params):
        img = img.copy()
        img[img < self.lower] = self.value
        return img