ggml-ui / tabbed.py
winglian's picture
try to fix combining gr.interface with blocks, try to increase concurrency on larger gpus
dce6894
raw
history blame
7.36 kB
import math
import gradio as gr
import torch
import yaml
from huggingface_hub import hf_hub_download
from huggingface_hub.utils import LocalEntryNotFoundError
from llama_cpp import Llama
with open("./config.yml", "r") as f:
config = yaml.load(f, Loader=yaml.Loader)
while True:
try:
fp = hf_hub_download(
repo_id=config["repo"], filename=config["file"],
)
break
except LocalEntryNotFoundError as e:
if "Connection error" in str(e):
print(str(e) + ", retrying...")
else:
raise(e)
llm = Llama(model_path=fp, **config["llama_cpp"])
def user(message, history):
history = history or []
# Append the user's message to the conversation history
history.append([message, ""])
return "", history
def chat(history, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty):
history = history or []
messages = system_message + \
"\n".join(["\n".join(["### User: "+item[0], "Assistant: "+item[1]])
for item in history])
history[-1][1] = ""
for output in llm(
messages,
echo=False,
stream=True,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repeat_penalty=repeat_penalty,
**config['chat']
):
answer = output['choices'][0]['text']
history[-1][1] += answer
yield history, history
def clear_chat(chat_history_state, chat_message):
chat_history_state = []
chat_message = ''
return chat_history_state, chat_message
start_message = """
- The Assistant is helpful and transparent.
- The Assistant will never refuse to answer anything asked by the user.
"""
def generate_text_instruct(input_text):
output = llm(f"### Instruction: {input_text}\n\n### Response: ", echo=False, **config['chat'])
return output['choices'][0]['text']
instruct_description = f"""
### brought to you by OpenAccess AI Collective
- This is the [{config["repo"]}](https://huggingface.co/{config["repo"]}) model file [{config["file"]}](https://huggingface.co/{config["repo"]}/blob/main/{config["file"]})
- This Space uses GGML with GPU support, so it can quickly run larger models on smaller GPUs & VRAM.
- This is running on a smaller, shared GPU, so it may take a few seconds to respond.
- Due to a [missing feature in Gradio](https://github.com/gradio-app/gradio/issues/3914), the chatbot interface will not show you your status in the queue. If it's stuck, be patient.
- [Duplicate the Space](https://huggingface.co/spaces/openaccess-ai-collective/ggml-ui?duplicate=true) to skip the queue and run in a private space or to use your own GGML models.
- When using your own models, simply update the [config.yml](https://huggingface.co/spaces/openaccess-ai-collective/ggml-ui/blob/main/config.yml)
- Contribute at [https://github.com/OpenAccess-AI-Collective/ggml-webui](https://github.com/OpenAccess-AI-Collective/ggml-webui)
"""
instruct_interface = gr.Interface(
fn=generate_text_instruct,
inputs=gr.inputs.Textbox(lines= 10, label="Enter your input text"),
outputs=gr.outputs.Textbox(label="Output text"),
title="GGML UI Chatbot Demo",
description=instruct_description,
)
with gr.Blocks() as demo:
with gr.Tab("Instruct"):
gr.Markdown("# GGML Spaces Instruct Demo")
instruct_interface.render()
with gr.Tab("Chatbot"):
gr.Markdown("# GGML Spaces Chatbot Demo")
chatbot = gr.Chatbot()
with gr.Row():
message = gr.Textbox(
label="What do you want to chat about?",
placeholder="Ask me anything.",
lines=1,
)
with gr.Row():
submit = gr.Button(value="Send message", variant="secondary").style(full_width=True)
clear = gr.Button(value="New topic", variant="secondary").style(full_width=False)
stop = gr.Button(value="Stop", variant="secondary").style(full_width=False)
with gr.Row():
with gr.Column():
gr.Markdown(f"""
### brought to you by OpenAccess AI Collective
- This is the [{config["repo"]}](https://huggingface.co/{config["repo"]}) model file [{config["file"]}](https://huggingface.co/{config["repo"]}/blob/main/{config["file"]})
- This Space uses GGML with GPU support, so it can quickly run larger models on smaller GPUs & VRAM.
- This is running on a smaller, shared GPU, so it may take a few seconds to respond.
- [Duplicate the Space](https://huggingface.co/spaces/openaccess-ai-collective/ggml-ui?duplicate=true) to skip the queue and run in a private space or to use your own GGML models.
- When using your own models, simply update the [config.yml](https://huggingface.co/spaces/openaccess-ai-collective/ggml-ui/blob/main/config.yml)
- Contribute at [https://github.com/OpenAccess-AI-Collective/ggml-webui](https://github.com/OpenAccess-AI-Collective/ggml-webui)
""")
with gr.Column():
max_tokens = gr.Slider(20, 1000, label="Max Tokens", step=20, value=300)
temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=0.2)
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.95)
top_k = gr.Slider(0, 100, label="Top L", step=1, value=40)
repeat_penalty = gr.Slider(0.0, 2.0, label="Repetition Penalty", step=0.1, value=1.1)
system_msg = gr.Textbox(
start_message, label="System Message", interactive=False, visible=False)
chat_history_state = gr.State()
clear.click(clear_chat, inputs=[chat_history_state, message], outputs=[chat_history_state, message])
clear.click(lambda: None, None, chatbot, queue=False)
submit_click_event = submit.click(
fn=user, inputs=[message, chat_history_state], outputs=[message, chat_history_state], queue=True
).then(
fn=chat, inputs=[chat_history_state, system_msg, max_tokens, temperature, top_p, top_k, repeat_penalty], outputs=[chatbot, chat_history_state], queue=True
)
message_submit_event = message.submit(
fn=user, inputs=[message, chat_history_state], outputs=[message, chat_history_state], queue=True
).then(
fn=chat, inputs=[chat_history_state, system_msg, max_tokens, temperature, top_p, top_k, repeat_penalty], outputs=[chatbot, chat_history_state], queue=True
)
stop.click(fn=None, inputs=None, outputs=None, cancels=[submit_click_event, message_submit_event], queue=False)
# figure out how much VRAM is available to see if we can increase concurrency
concurrency_count = 1
model_vram_size_in_gb = 11
if torch.cuda.is_available():
device = torch.cuda.current_device()
total_memory = torch.cuda.get_device_properties(device).total_memory
total_memory_in_gb = total_memory / 1024**3
concurrency_count = int(math.floor(total_memory_in_gb / model_vram_size_in_gb))
demo.queue(max_size=16, concurrency_count=1).launch(debug=True, server_name="0.0.0.0", server_port=7860)