Spaces:
Build error
Build error
File size: 5,004 Bytes
7b590e5 de2057e 7b590e5 de2057e 7b590e5 de2057e 0a981aa 7b590e5 0a981aa 7b590e5 ce7dde7 7b590e5 0a981aa 7b590e5 0a981aa ce7dde7 0a981aa 4cc03d2 7b590e5 0a981aa 7b590e5 0a981aa 7b590e5 0a981aa ce7dde7 7b590e5 0a981aa ce7dde7 0a981aa ce7dde7 0a981aa 1dc6c65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
import gradio as gr
import yaml
from huggingface_hub import hf_hub_download
from huggingface_hub.utils import LocalEntryNotFoundError
from llama_cpp import Llama
with open("./config.yml", "r") as f:
config = yaml.load(f, Loader=yaml.Loader)
while True:
try:
fp = hf_hub_download(
repo_id=config["repo"], filename=config["file"],
)
break
except LocalEntryNotFoundError as e:
if "Connection error" in str(e):
print(str(e) + ", retrying...")
else:
raise(e)
llm = Llama(model_path=fp, **config["llama_cpp"])
def user(message, history):
history = history or []
# Append the user's message to the conversation history
history.append([message, ""])
return "", history
def chat(history, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty):
history = history or []
messages = system_message + \
"\n".join(["\n".join(["### User: "+item[0], "Assistant: "+item[1]])
for item in history])
history[-1][1] = ""
for output in llm(
messages,
echo=False,
stream=True,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repeat_penalty=repeat_penalty,
**config['chat']
):
answer = output['choices'][0]['text']
history[-1][1] += answer
yield history, history
def clear_chat(chat_history_state, chat_message):
chat_history_state = []
chat_message = ''
return chat_history_state, chat_message
start_message = """Assistant
- Assistant is helpful and transparent.
- Assistant will never refuse to do anything asked by the user."""
blocks = gr.Blocks()
with blocks:
gr.Markdown("# GGML Spaces UI - OpenAccess AI Collective")
chatbot = gr.Chatbot()
with gr.Row():
message = gr.Textbox(
label="What do you want to chat about?",
placeholder="Ask me anything.",
lines=1,
)
with gr.Row():
submit = gr.Button(value="Send message", variant="secondary").style(full_width=True)
clear = gr.Button(value="New topic", variant="secondary").style(full_width=False)
stop = gr.Button(value="Stop", variant="secondary").style(full_width=False)
with gr.Row():
with gr.Column():
gr.Markdown(f"""
- This is the [{config["repo"]}](https://huggingface.co/{config["repo"]}) model file [{config["file"]}](https://huggingface.co/{config["repo"]}/blob/main/{config["file"]})
- This Space uses GGML with GPU support, so it can run larger models on smaller GPUs & VRAM quickly.
- This is running on a smaller, shared GPU, so it may take a few seconds to respond.
- [Duplicate the Space](https://huggingface.co/spaces/openaccess-ai-collective/ggml-ui?duplicate=true) to skip the queue and run in a private space or to use your own GGML models.
- When using your own models, simply update the [config.yml](https://huggingface.co/spaces/openaccess-ai-collective/ggml-ui/blob/main/config.yml)")
- Contribute at [https://github.com/OpenAccess-AI-Collective/ggml-webui](https://github.com/OpenAccess-AI-Collective/ggml-webui)
""")
with gr.Column():
max_tokens = gr.Slider(20, 1000, label="Max Tokens", step=20, value=300)
temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=0.2)
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.95)
top_k = gr.Slider(0, 100, label="Top L", step=1, value=40)
repeat_penalty = gr.Slider(0.0, 2.0, label="Repetition Penalty", step=0.1, value=1.1)
system_msg = gr.Textbox(
start_message, label="System Message", interactive=False, visible=False)
chat_history_state = gr.State()
clear.click(clear_chat, inputs=[chat_history_state, message], outputs=[chat_history_state, message])
clear.click(lambda: None, None, chatbot, queue=False)
submit_click_event = submit.click(
fn=user, inputs=[message, chat_history_state], outputs=[message, chat_history_state], queue=False
).then(
fn=chat, inputs=[chat_history_state, system_msg, max_tokens, temperature, top_p, top_k, repeat_penalty], outputs=[chatbot, chat_history_state], queue=True
)
message_submit_event = message.submit(
fn=user, inputs=[message, chat_history_state], outputs=[message, chat_history_state], queue=False
).then(
fn=chat, inputs=[chat_history_state, system_msg, max_tokens, temperature, top_p, top_k, repeat_penalty], outputs=[chatbot, chat_history_state], queue=True
)
stop.click(fn=None, inputs=None, outputs=None, cancels=[submit_click_event, message_submit_event], queue=False)
blocks.queue(max_size=32, concurrency_count=4).launch(debug=True, server_name="0.0.0.0", server_port=7860)
|