Commit
·
46c15e8
1
Parent(s):
de86128
Add v0
Browse files- models.py +312 -16
- requirements.txt +2 -1
models.py
CHANGED
|
@@ -3,14 +3,16 @@ import pandas as pd
|
|
| 3 |
from datasets import load_dataset
|
| 4 |
from ast import literal_eval
|
| 5 |
import altair as alt
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
nlp_tasks = ["text-classification", "text-generation", "text2text-generation", "token-classification", "fill-mask", "question-answering"
|
| 8 |
"translation", "conversational", "sentence-similarity", "summarization", "multiple-choice", "zero-shot-classification", "table-question-answering"
|
| 9 |
]
|
| 10 |
audio_tasks = ["automatic-speech-recognition", "audio-classification", "text-to-speech", "audio-to-audio", "voice-activity-detection"]
|
| 11 |
cv_tasks = ["image-classification", "image-segmentation", "zero-shot-image-classification", "image-to-image", "unconditional-image-generation", "object-detection"]
|
| 12 |
multimodal = ["feature-extraction", "text-to-image", "visual-question-answering", "image-to-text", "document-question-answering"]
|
| 13 |
-
tabular = ["tabular-
|
| 14 |
|
| 15 |
modalities = {
|
| 16 |
"nlp": nlp_tasks,
|
|
@@ -52,10 +54,23 @@ base = st.selectbox(
|
|
| 52 |
supported_revisions)
|
| 53 |
data = process_dataset(base)
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
total_samples = data.shape[0]
|
| 56 |
st.metric(label="Total models", value=total_samples)
|
| 57 |
|
| 58 |
-
tab1, tab2, tab3, tab4, tab5, tab6, tab7 = st.tabs(["Language", "License", "Pipeline", "Discussion Features", "Libraries", "Model Cards", "Super users"])
|
| 59 |
|
| 60 |
with tab1:
|
| 61 |
st.header("Languages info")
|
|
@@ -78,9 +93,9 @@ with tab1:
|
|
| 78 |
return leng
|
| 79 |
|
| 80 |
data["languages"] = data.apply(make_list, axis=1)
|
| 81 |
-
data["
|
| 82 |
|
| 83 |
-
models_with_langs = data[data["
|
| 84 |
langs = models_with_langs["languages"].explode()
|
| 85 |
langs = langs[langs != {}]
|
| 86 |
total_langs = len(langs.unique())
|
|
@@ -93,7 +108,8 @@ with tab1:
|
|
| 93 |
with col3:
|
| 94 |
st.metric(label="Total Unique Languages", value=total_langs)
|
| 95 |
|
| 96 |
-
st.subheader("
|
|
|
|
| 97 |
linguality = st.selectbox(
|
| 98 |
'All or just Multilingual',
|
| 99 |
["All", "Just Multilingual", "Three or more languages"])
|
|
@@ -104,11 +120,11 @@ with tab1:
|
|
| 104 |
elif linguality == "Three or more languages":
|
| 105 |
filter = 2
|
| 106 |
|
| 107 |
-
models_with_langs = data[data["
|
| 108 |
-
df1 = models_with_langs['
|
| 109 |
st.bar_chart(df1)
|
| 110 |
|
| 111 |
-
st.subheader("
|
| 112 |
linguality_2 = st.selectbox(
|
| 113 |
'All or filtered',
|
| 114 |
["All", "No English", "Remove top 10"])
|
|
@@ -121,7 +137,7 @@ with tab1:
|
|
| 121 |
else:
|
| 122 |
filter = 2
|
| 123 |
|
| 124 |
-
models_with_langs = data[data["
|
| 125 |
langs = models_with_langs["languages"].explode()
|
| 126 |
langs = langs[langs != {}]
|
| 127 |
|
|
@@ -187,9 +203,8 @@ with tab2:
|
|
| 187 |
x='counts',
|
| 188 |
y=alt.X('license', sort=None)
|
| 189 |
))
|
| 190 |
-
st.text("There are some edge cases, as old repos using lists of licenses.
|
| 191 |
|
| 192 |
-
|
| 193 |
st.subheader("Raw Data")
|
| 194 |
d = data["license"].value_counts().rename_axis("license").to_frame('counts').reset_index()
|
| 195 |
st.dataframe(d)
|
|
@@ -197,18 +212,23 @@ with tab2:
|
|
| 197 |
with tab3:
|
| 198 |
st.header("Pipeline info")
|
| 199 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
no_pipeline_count = data["pipeline"].isna().sum()
|
| 201 |
col1, col2, col3 = st.columns(3)
|
| 202 |
with col1:
|
| 203 |
-
st.metric(label="
|
| 204 |
with col2:
|
| 205 |
st.metric(label="No pipeline Specified", value=no_pipeline_count)
|
| 206 |
with col3:
|
| 207 |
st.metric(label="Total Unique Pipelines", value=len(data["pipeline"].unique()))
|
| 208 |
|
| 209 |
-
st.subheader("Distribution of pipelines per model repo")
|
| 210 |
pipeline_filter = st.selectbox(
|
| 211 |
-
'
|
| 212 |
["All", "NLP", "CV", "Audio", "RL", "Multimodal", "Tabular"])
|
| 213 |
|
| 214 |
filter = 0
|
|
@@ -227,30 +247,306 @@ with tab3:
|
|
| 227 |
elif pipeline_filter == "Tabular":
|
| 228 |
filter = 6
|
| 229 |
|
| 230 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
|
|
|
|
| 232 |
st.write(alt.Chart(d).mark_bar().encode(
|
| 233 |
x='counts',
|
| 234 |
y=alt.X('pipeline', sort=None)
|
| 235 |
))
|
| 236 |
|
|
|
|
|
|
|
| 237 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
|
|
|
|
| 240 |
|
| 241 |
|
|
|
|
|
|
|
| 242 |
|
|
|
|
|
|
|
| 243 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 244 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 245 |
|
|
|
|
|
|
|
| 246 |
|
|
|
|
|
|
|
| 247 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
|
| 249 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 250 |
|
| 251 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
|
| 255 |
|
| 256 |
|
|
|
|
| 3 |
from datasets import load_dataset
|
| 4 |
from ast import literal_eval
|
| 5 |
import altair as alt
|
| 6 |
+
import plotly.graph_objs as go
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
|
| 9 |
+
nlp_tasks = ["text-classification", "text-generation", "text2text-generation", "token-classification", "fill-mask", "question-answering",
|
| 10 |
"translation", "conversational", "sentence-similarity", "summarization", "multiple-choice", "zero-shot-classification", "table-question-answering"
|
| 11 |
]
|
| 12 |
audio_tasks = ["automatic-speech-recognition", "audio-classification", "text-to-speech", "audio-to-audio", "voice-activity-detection"]
|
| 13 |
cv_tasks = ["image-classification", "image-segmentation", "zero-shot-image-classification", "image-to-image", "unconditional-image-generation", "object-detection"]
|
| 14 |
multimodal = ["feature-extraction", "text-to-image", "visual-question-answering", "image-to-text", "document-question-answering"]
|
| 15 |
+
tabular = ["tabular-classification", "tabular-regression"]
|
| 16 |
|
| 17 |
modalities = {
|
| 18 |
"nlp": nlp_tasks,
|
|
|
|
| 54 |
supported_revisions)
|
| 55 |
data = process_dataset(base)
|
| 56 |
|
| 57 |
+
def eval_tags(row):
|
| 58 |
+
tags = row["tags"]
|
| 59 |
+
if tags == "none" or tags == [] or tags == "{}":
|
| 60 |
+
return []
|
| 61 |
+
if tags[0] != "[":
|
| 62 |
+
tags = str([tags])
|
| 63 |
+
val = literal_eval(tags)
|
| 64 |
+
if isinstance(val, dict):
|
| 65 |
+
return []
|
| 66 |
+
return val
|
| 67 |
+
|
| 68 |
+
data["tags"] = data.apply(eval_tags, axis=1)
|
| 69 |
+
|
| 70 |
total_samples = data.shape[0]
|
| 71 |
st.metric(label="Total models", value=total_samples)
|
| 72 |
|
| 73 |
+
tab1, tab2, tab3, tab4, tab5, tab6, tab7, tab8 = st.tabs(["Language", "License", "Pipeline", "Discussion Features", "Libraries", "Model Cards", "Super users", "Raw Data"])
|
| 74 |
|
| 75 |
with tab1:
|
| 76 |
st.header("Languages info")
|
|
|
|
| 93 |
return leng
|
| 94 |
|
| 95 |
data["languages"] = data.apply(make_list, axis=1)
|
| 96 |
+
data["language_count"] = data.apply(language_count, axis=1)
|
| 97 |
|
| 98 |
+
models_with_langs = data[data["language_count"] > 0]
|
| 99 |
langs = models_with_langs["languages"].explode()
|
| 100 |
langs = langs[langs != {}]
|
| 101 |
total_langs = len(langs.unique())
|
|
|
|
| 108 |
with col3:
|
| 109 |
st.metric(label="Total Unique Languages", value=total_langs)
|
| 110 |
|
| 111 |
+
st.subheader("Count of languages per model repo")
|
| 112 |
+
st.text("Some repos are for multiple languages, so the count is greater than 1")
|
| 113 |
linguality = st.selectbox(
|
| 114 |
'All or just Multilingual',
|
| 115 |
["All", "Just Multilingual", "Three or more languages"])
|
|
|
|
| 120 |
elif linguality == "Three or more languages":
|
| 121 |
filter = 2
|
| 122 |
|
| 123 |
+
models_with_langs = data[data["language_count"] > filter]
|
| 124 |
+
df1 = models_with_langs['language_count'].value_counts()
|
| 125 |
st.bar_chart(df1)
|
| 126 |
|
| 127 |
+
st.subheader("Most frequent languages")
|
| 128 |
linguality_2 = st.selectbox(
|
| 129 |
'All or filtered',
|
| 130 |
["All", "No English", "Remove top 10"])
|
|
|
|
| 137 |
else:
|
| 138 |
filter = 2
|
| 139 |
|
| 140 |
+
models_with_langs = data[data["language_count"] > 0]
|
| 141 |
langs = models_with_langs["languages"].explode()
|
| 142 |
langs = langs[langs != {}]
|
| 143 |
|
|
|
|
| 203 |
x='counts',
|
| 204 |
y=alt.X('license', sort=None)
|
| 205 |
))
|
| 206 |
+
st.text("There are some edge cases, as old repos using lists of licenses.")
|
| 207 |
|
|
|
|
| 208 |
st.subheader("Raw Data")
|
| 209 |
d = data["license"].value_counts().rename_axis("license").to_frame('counts').reset_index()
|
| 210 |
st.dataframe(d)
|
|
|
|
| 212 |
with tab3:
|
| 213 |
st.header("Pipeline info")
|
| 214 |
|
| 215 |
+
tags = data["tags"].explode()
|
| 216 |
+
tags = tags[tags.notna()].value_counts().rename_axis("tag").to_frame('counts').reset_index()
|
| 217 |
+
s = tags["tag"]
|
| 218 |
+
s = s[s.apply(type) == str]
|
| 219 |
+
unique_tags = len(s.unique())
|
| 220 |
+
|
| 221 |
no_pipeline_count = data["pipeline"].isna().sum()
|
| 222 |
col1, col2, col3 = st.columns(3)
|
| 223 |
with col1:
|
| 224 |
+
st.metric(label="# models that have any pipeline", value=total_samples-no_pipeline_count)
|
| 225 |
with col2:
|
| 226 |
st.metric(label="No pipeline Specified", value=no_pipeline_count)
|
| 227 |
with col3:
|
| 228 |
st.metric(label="Total Unique Pipelines", value=len(data["pipeline"].unique()))
|
| 229 |
|
|
|
|
| 230 |
pipeline_filter = st.selectbox(
|
| 231 |
+
'Modalities',
|
| 232 |
["All", "NLP", "CV", "Audio", "RL", "Multimodal", "Tabular"])
|
| 233 |
|
| 234 |
filter = 0
|
|
|
|
| 247 |
elif pipeline_filter == "Tabular":
|
| 248 |
filter = 6
|
| 249 |
|
| 250 |
+
st.subheader("High-level metrics")
|
| 251 |
+
filtered_data = data[data['pipeline'].notna()]
|
| 252 |
+
|
| 253 |
+
if filter == 1:
|
| 254 |
+
filtered_data = data[data["modality"] == "nlp"]
|
| 255 |
+
elif filter == 2:
|
| 256 |
+
filtered_data = data[data["modality"] == "cv"]
|
| 257 |
+
elif filter == 3:
|
| 258 |
+
filtered_data = data[data["modality"] == "audio"]
|
| 259 |
+
elif filter == 4:
|
| 260 |
+
filtered_data = data[data["modality"] == "rl"]
|
| 261 |
+
elif filter == 5:
|
| 262 |
+
filtered_data = data[data["modality"] == "multimodal"]
|
| 263 |
+
elif filter == 6:
|
| 264 |
+
filtered_data = data[data["modality"] == "tabular"]
|
| 265 |
+
|
| 266 |
+
col1, col2, col3 = st.columns(3)
|
| 267 |
+
with col1:
|
| 268 |
+
p = st.selectbox(
|
| 269 |
+
'What pipeline do you want to see?',
|
| 270 |
+
["all", *filtered_data["pipeline"].unique()]
|
| 271 |
+
)
|
| 272 |
+
with col2:
|
| 273 |
+
l = st.selectbox(
|
| 274 |
+
'What library do you want to see?',
|
| 275 |
+
["all", *filtered_data["library"].unique()]
|
| 276 |
+
)
|
| 277 |
+
with col3:
|
| 278 |
+
f = st.selectbox(
|
| 279 |
+
'What framework support? (transformers)',
|
| 280 |
+
["all", "py", "tf", "jax"]
|
| 281 |
+
)
|
| 282 |
+
|
| 283 |
+
col1, col2 = st.columns(2)
|
| 284 |
+
with col1:
|
| 285 |
+
filt = st.multiselect(
|
| 286 |
+
label="Tags (All by default)",
|
| 287 |
+
options=s.unique(),
|
| 288 |
+
default=None)
|
| 289 |
+
with col2:
|
| 290 |
+
o = st.selectbox(
|
| 291 |
+
label="Operation (for tags)",
|
| 292 |
+
options=["Any", "All", "None"]
|
| 293 |
+
)
|
| 294 |
+
|
| 295 |
+
def filter_fn(row):
|
| 296 |
+
tags = row["tags"]
|
| 297 |
+
tags[:] = [d for d in tags if isinstance(d, str)]
|
| 298 |
+
if o == "All":
|
| 299 |
+
if all(elem in tags for elem in filt):
|
| 300 |
+
return True
|
| 301 |
+
|
| 302 |
+
s1 = set(tags)
|
| 303 |
+
s2 = set(filt)
|
| 304 |
+
if o == "Any":
|
| 305 |
+
if bool(s1 & s2):
|
| 306 |
+
return True
|
| 307 |
+
if o == "None":
|
| 308 |
+
if len(s1.intersection(s2)) == 0:
|
| 309 |
+
return True
|
| 310 |
+
return False
|
| 311 |
+
|
| 312 |
+
|
| 313 |
+
if p != "all":
|
| 314 |
+
filtered_data = filtered_data[filtered_data["pipeline"] == p]
|
| 315 |
+
if l != "all":
|
| 316 |
+
filtered_data = filtered_data[filtered_data["library"] == l]
|
| 317 |
+
if f != "all":
|
| 318 |
+
if f == "py":
|
| 319 |
+
filtered_data = filtered_data[filtered_data["pytorch"] == 1]
|
| 320 |
+
elif f == "tf":
|
| 321 |
+
filtered_data = filtered_data[filtered_data["tensorflow"] == 1]
|
| 322 |
+
elif f == "jax":
|
| 323 |
+
filtered_data = filtered_data[filtered_data["jax"] == 1]
|
| 324 |
+
if filt != []:
|
| 325 |
+
filtered_data = filtered_data[filtered_data.apply(filter_fn, axis=1)]
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
d = filtered_data["pipeline"].value_counts().rename_axis("pipeline").to_frame('counts').reset_index()
|
| 329 |
+
columns_of_interest = ["downloads_30d", "likes", "pytorch", "tensorflow", "jax"]
|
| 330 |
+
grouped_data = filtered_data.groupby("pipeline").sum()[columns_of_interest]
|
| 331 |
+
final_data = pd.merge(
|
| 332 |
+
d, grouped_data, how="outer", on="pipeline"
|
| 333 |
+
)
|
| 334 |
+
sums = grouped_data.sum()
|
| 335 |
+
|
| 336 |
+
col1, col2, col3 = st.columns(3)
|
| 337 |
+
with col1:
|
| 338 |
+
st.metric(label="Total models", value=filtered_data.shape[0])
|
| 339 |
+
with col2:
|
| 340 |
+
st.metric(label="Cumulative Downloads (30d)", value=sums["downloads_30d"])
|
| 341 |
+
with col3:
|
| 342 |
+
st.metric(label="Cumulative likes", value=sums["likes"])
|
| 343 |
+
|
| 344 |
+
col1, col2, col3 = st.columns(3)
|
| 345 |
+
with col1:
|
| 346 |
+
st.metric(label="Total in PT", value=sums["pytorch"])
|
| 347 |
+
with col2:
|
| 348 |
+
st.metric(label="Total in TF", value=sums["tensorflow"])
|
| 349 |
+
with col3:
|
| 350 |
+
st.metric(label="Total in JAX", value=sums["jax"])
|
| 351 |
+
|
| 352 |
+
st.metric(label="Unique Tags", value=unique_tags)
|
| 353 |
+
|
| 354 |
+
|
| 355 |
|
| 356 |
+
st.subheader("Count of models per pipeline")
|
| 357 |
st.write(alt.Chart(d).mark_bar().encode(
|
| 358 |
x='counts',
|
| 359 |
y=alt.X('pipeline', sort=None)
|
| 360 |
))
|
| 361 |
|
| 362 |
+
st.subheader("Aggregated data")
|
| 363 |
+
st.dataframe(final_data)
|
| 364 |
|
| 365 |
+
st.subheader("Most common model types (specific to transformers")
|
| 366 |
+
d = filtered_data["model_type"].value_counts().rename_axis("model_type").to_frame('counts').reset_index()
|
| 367 |
+
d = d.iloc[:15]
|
| 368 |
+
st.write(alt.Chart(d).mark_bar().encode(
|
| 369 |
+
x='counts',
|
| 370 |
+
y=alt.X('model_type', sort=None)
|
| 371 |
+
))
|
| 372 |
|
| 373 |
+
st.subheader("Most common library types (Learn more in library tab)")
|
| 374 |
+
d = filtered_data["library"].value_counts().rename_axis("library").to_frame('counts').reset_index().head(15)
|
| 375 |
+
st.write(alt.Chart(d).mark_bar().encode(
|
| 376 |
+
x='counts',
|
| 377 |
+
y=alt.X('library', sort=None)
|
| 378 |
+
))
|
| 379 |
+
|
| 380 |
+
st.subheader("Tags by count")
|
| 381 |
+
tags = filtered_data["tags"].explode()
|
| 382 |
+
tags = tags[tags.notna()].value_counts().rename_axis("tag").to_frame('counts').reset_index()
|
| 383 |
+
st.write(alt.Chart(tags.head(30)).mark_bar().encode(
|
| 384 |
+
x='counts',
|
| 385 |
+
y=alt.X('tag', sort=None)
|
| 386 |
+
))
|
| 387 |
+
|
| 388 |
+
st.subheader("Raw Data")
|
| 389 |
+
columns_of_interest = [
|
| 390 |
+
"repo_id", "author", "model_type", "files_per_repo", "library",
|
| 391 |
+
"downloads_30d", "likes", "pytorch", "tensorflow", "jax"]
|
| 392 |
+
raw_data = filtered_data[columns_of_interest]
|
| 393 |
+
st.dataframe(raw_data)
|
| 394 |
+
|
| 395 |
+
|
| 396 |
|
| 397 |
+
# todo : add activity metric
|
| 398 |
|
| 399 |
|
| 400 |
+
with tab4:
|
| 401 |
+
st.header("Discussions Tab info")
|
| 402 |
|
| 403 |
+
columns_of_interest = ["prs_count", "prs_open", "prs_merged", "prs_closed", "discussions_count", "discussions_open", "discussions_closed"]
|
| 404 |
+
sums = data[columns_of_interest].sum()
|
| 405 |
|
| 406 |
+
col1, col2, col3, col4 = st.columns(4)
|
| 407 |
+
with col1:
|
| 408 |
+
st.metric(label="Total PRs", value=sums["prs_count"])
|
| 409 |
+
with col2:
|
| 410 |
+
st.metric(label="PRs opened", value=sums["prs_open"])
|
| 411 |
+
with col3:
|
| 412 |
+
st.metric(label="PRs merged", value=sums["prs_merged"])
|
| 413 |
+
with col4:
|
| 414 |
+
st.metric(label="PRs closed", value=sums["prs_closed"])
|
| 415 |
|
| 416 |
+
col1, col2, col3 = st.columns(3)
|
| 417 |
+
with col1:
|
| 418 |
+
st.metric(label="Total discussions", value=sums["discussions_count"])
|
| 419 |
+
with col2:
|
| 420 |
+
st.metric(label="Discussions open", value=sums["discussions_open"])
|
| 421 |
+
with col3:
|
| 422 |
+
st.metric(label="Discussions closed", value=sums["discussions_closed"])
|
| 423 |
|
| 424 |
+
filtered_data = data[["repo_id", "prs_count", "prs_open", "prs_merged", "prs_closed", "discussions_count", "discussions_open", "discussions_closed"]].sort_values("prs_count", ascending=False).reset_index(drop=True)
|
| 425 |
+
st.dataframe(filtered_data)
|
| 426 |
|
| 427 |
+
with tab5:
|
| 428 |
+
st.header("Library info")
|
| 429 |
|
| 430 |
+
no_library_count = data["library"].isna().sum()
|
| 431 |
+
col1, col2, col3 = st.columns(3)
|
| 432 |
+
with col1:
|
| 433 |
+
st.metric(label="# models that have any library", value=total_samples-no_library_count)
|
| 434 |
+
with col2:
|
| 435 |
+
st.metric(label="No library Specified", value=no_library_count)
|
| 436 |
+
with col3:
|
| 437 |
+
st.metric(label="Total Unique library", value=len(data["library"].unique()))
|
| 438 |
|
| 439 |
|
| 440 |
+
st.subheader("High-level metrics")
|
| 441 |
+
filtered_data = data[data['library'].notna()]
|
| 442 |
+
|
| 443 |
+
col1, col2 = st.columns(2)
|
| 444 |
+
with col1:
|
| 445 |
+
lib = st.selectbox(
|
| 446 |
+
'What library do you want to see? ',
|
| 447 |
+
["all", *filtered_data["library"].unique()]
|
| 448 |
+
)
|
| 449 |
+
with col2:
|
| 450 |
+
pip = st.selectbox(
|
| 451 |
+
'What pipeline do you want to see? ',
|
| 452 |
+
["all", *filtered_data["pipeline"].unique()]
|
| 453 |
+
)
|
| 454 |
+
|
| 455 |
+
if pip != "all":
|
| 456 |
+
filtered_data = filtered_data[filtered_data["pipeline"] == pip]
|
| 457 |
+
if lib != "all":
|
| 458 |
+
filtered_data = filtered_data[filtered_data["library"] == lib]
|
| 459 |
|
| 460 |
|
| 461 |
+
d = filtered_data["library"].value_counts().rename_axis("library").to_frame('counts').reset_index()
|
| 462 |
+
grouped_data = filtered_data.groupby("library").sum()[["downloads_30d", "likes"]]
|
| 463 |
+
final_data = pd.merge(
|
| 464 |
+
d, grouped_data, how="outer", on="library"
|
| 465 |
+
)
|
| 466 |
+
sums = grouped_data.sum()
|
| 467 |
|
| 468 |
+
col1, col2, col3 = st.columns(3)
|
| 469 |
+
with col1:
|
| 470 |
+
st.metric(label="Total models", value=filtered_data.shape[0])
|
| 471 |
+
with col2:
|
| 472 |
+
st.metric(label="Cumulative Downloads (30d)", value=sums["downloads_30d"])
|
| 473 |
+
with col3:
|
| 474 |
+
st.metric(label="Cumulative likes", value=sums["likes"])
|
| 475 |
+
|
| 476 |
+
st.subheader("Most common library types (Learn more in library tab)")
|
| 477 |
+
d = filtered_data["library"].value_counts().rename_axis("library").to_frame('counts').reset_index().head(15)
|
| 478 |
+
st.write(alt.Chart(d).mark_bar().encode(
|
| 479 |
+
x='counts',
|
| 480 |
+
y=alt.X('library', sort=None)
|
| 481 |
+
))
|
| 482 |
|
| 483 |
+
|
| 484 |
+
|
| 485 |
+
st.subheader("Aggregated Data")
|
| 486 |
+
st.dataframe(final_data)
|
| 487 |
+
|
| 488 |
+
st.subheader("Raw Data")
|
| 489 |
+
columns_of_interest = ["repo_id", "author", "files_per_repo", "library", "downloads_30d", "likes"]
|
| 490 |
+
filtered_data = filtered_data[columns_of_interest]
|
| 491 |
+
st.dataframe(filtered_data)
|
| 492 |
+
|
| 493 |
+
with tab6:
|
| 494 |
+
st.header("Model cards")
|
| 495 |
+
|
| 496 |
+
columns_of_interest = ["has_model_index", "has_metadata", "has_text", "text_length"]
|
| 497 |
+
rows = data.shape[0]
|
| 498 |
+
|
| 499 |
+
cond = data["has_model_index"] | data["has_text"]
|
| 500 |
+
with_model_card = data[cond]
|
| 501 |
+
c_model_card = with_model_card.shape[0]
|
| 502 |
+
st.subheader("High-level metrics")
|
| 503 |
+
col1, col2, col3 = st.columns(3)
|
| 504 |
+
with col1:
|
| 505 |
+
st.metric(label="# models with model card file", value=c_model_card)
|
| 506 |
+
with col2:
|
| 507 |
+
st.metric(label="# models without model card file", value=rows-c_model_card)
|
| 508 |
+
|
| 509 |
+
with_index = data["has_model_index"].sum()
|
| 510 |
+
with col1:
|
| 511 |
+
st.metric(label="# models with model index", value=with_index)
|
| 512 |
+
with col2:
|
| 513 |
+
st.metric(label="# models without model index", value=rows-with_index)
|
| 514 |
+
|
| 515 |
+
with_text = data["has_text"]
|
| 516 |
+
with col1:
|
| 517 |
+
st.metric(label="# models with model card text", value=with_text.sum())
|
| 518 |
+
with col2:
|
| 519 |
+
st.metric(label="# models without model card text", value=rows-with_text.sum())
|
| 520 |
+
|
| 521 |
+
|
| 522 |
+
st.subheader("Length (chars) of model card content")
|
| 523 |
+
fig, ax = plt.subplots()
|
| 524 |
+
ax = data["length_bins"].value_counts().plot.bar()
|
| 525 |
+
st.metric(label="# average length of model card (chars)", value=data[with_text]["text_length"].mean())
|
| 526 |
+
st.pyplot(fig)
|
| 527 |
+
|
| 528 |
+
st.subheader("Tags (Read more in Pipeline tab)")
|
| 529 |
+
tags = data["tags"].explode()
|
| 530 |
+
tags = tags[tags.notna()].value_counts().rename_axis("tag").to_frame('counts').reset_index()
|
| 531 |
+
st.write(alt.Chart(tags.head(30)).mark_bar().encode(
|
| 532 |
+
x='counts',
|
| 533 |
+
y=alt.X('tag', sort=None)
|
| 534 |
+
))
|
| 535 |
+
|
| 536 |
+
with tab7:
|
| 537 |
+
st.header("Authors")
|
| 538 |
+
st.text("This info corresponds to the repos owned by the authors")
|
| 539 |
+
authors = data.groupby("author").sum().drop(["text_length", "Unnamed: 0", "language_count"], axis=1).sort_values("downloads_30d", ascending=False)
|
| 540 |
+
d = data["author"].value_counts().rename_axis("author").to_frame('counts').reset_index()
|
| 541 |
+
final_data = pd.merge(
|
| 542 |
+
d, authors, how="outer", on="author"
|
| 543 |
+
)
|
| 544 |
+
st.dataframe(final_data)
|
| 545 |
+
|
| 546 |
+
with tab8:
|
| 547 |
+
st.header("Raw Data")
|
| 548 |
+
d = data.astype(str)
|
| 549 |
+
st.dataframe(d)
|
| 550 |
|
| 551 |
|
| 552 |
|
requirements.txt
CHANGED
|
@@ -1 +1,2 @@
|
|
| 1 |
-
datasets
|
|
|
|
|
|
| 1 |
+
datasets
|
| 2 |
+
plotly
|