Reorder columns
Browse files
app.py
CHANGED
@@ -60,9 +60,13 @@ def get_leaderboard_df(merge_values: bool = True):
|
|
60 |
value = data["results"][first_result_key][first_metric_key] # gets the value of the first metric
|
61 |
df.loc[model_revision, task] = value
|
62 |
|
63 |
-
# Put IFEval in first
|
64 |
ifeval_col = df.pop("Ifeval")
|
65 |
df.insert(1, "Ifeval", ifeval_col)
|
|
|
|
|
|
|
|
|
66 |
# Drop rows where every entry is NaN
|
67 |
df = df.dropna(how="all", axis=0, subset=[c for c in df.columns if c != "Date"])
|
68 |
df.insert(loc=1, column="Average", value=df.mean(axis=1, numeric_only=True))
|
|
|
60 |
value = data["results"][first_result_key][first_metric_key] # gets the value of the first metric
|
61 |
df.loc[model_revision, task] = value
|
62 |
|
63 |
+
# Put IFEval / BBH / AGIEval in first columns
|
64 |
ifeval_col = df.pop("Ifeval")
|
65 |
df.insert(1, "Ifeval", ifeval_col)
|
66 |
+
bbh_col = df.pop("Bbh")
|
67 |
+
df.insert(2, "Bbh", bbh_col)
|
68 |
+
agieval_col = df.pop("Agieval")
|
69 |
+
df.insert(3, "Agieval", agieval_col)
|
70 |
# Drop rows where every entry is NaN
|
71 |
df = df.dropna(how="all", axis=0, subset=[c for c in df.columns if c != "Date"])
|
72 |
df.insert(loc=1, column="Average", value=df.mean(axis=1, numeric_only=True))
|