Unstack models by date
Browse files- a.ipynb +0 -168
- app.py +7 -4
- debug.ipynb +413 -0
    	
        a.ipynb
    DELETED
    
    | @@ -1,168 +0,0 @@ | |
| 1 | 
            -
            {
         | 
| 2 | 
            -
             "cells": [
         | 
| 3 | 
            -
              {
         | 
| 4 | 
            -
               "cell_type": "code",
         | 
| 5 | 
            -
               "execution_count": 1,
         | 
| 6 | 
            -
               "metadata": {},
         | 
| 7 | 
            -
               "outputs": [],
         | 
| 8 | 
            -
               "source": [
         | 
| 9 | 
            -
                "import json\n",
         | 
| 10 | 
            -
                "from pathlib import Path\n",
         | 
| 11 | 
            -
                "\n",
         | 
| 12 | 
            -
                "import gradio as gr\n",
         | 
| 13 | 
            -
                "import pandas as pd"
         | 
| 14 | 
            -
               ]
         | 
| 15 | 
            -
              },
         | 
| 16 | 
            -
              {
         | 
| 17 | 
            -
               "cell_type": "code",
         | 
| 18 | 
            -
               "execution_count": 31,
         | 
| 19 | 
            -
               "metadata": {},
         | 
| 20 | 
            -
               "outputs": [],
         | 
| 21 | 
            -
               "source": [
         | 
| 22 | 
            -
                "def get_leaderboard_df():\n",
         | 
| 23 | 
            -
                "    filepaths = list(Path(\"eval_results\").rglob(\"*.json\"))\n",
         | 
| 24 | 
            -
                "\n",
         | 
| 25 | 
            -
                "    # Parse filepaths to get unique models\n",
         | 
| 26 | 
            -
                "    models = set()\n",
         | 
| 27 | 
            -
                "    for filepath in filepaths:\n",
         | 
| 28 | 
            -
                "        path_parts = Path(filepath).parts\n",
         | 
| 29 | 
            -
                "        model_revision = \"_\".join(path_parts[1:4])\n",
         | 
| 30 | 
            -
                "        models.add(model_revision)\n",
         | 
| 31 | 
            -
                "\n",
         | 
| 32 | 
            -
                "    # Initialize DataFrame\n",
         | 
| 33 | 
            -
                "    df = pd.DataFrame(index=list(models))\n",
         | 
| 34 | 
            -
                "\n",
         | 
| 35 | 
            -
                "    # Extract data from each file and populate the DataFrame\n",
         | 
| 36 | 
            -
                "    for filepath in filepaths:\n",
         | 
| 37 | 
            -
                "        path_parts = Path(filepath).parts\n",
         | 
| 38 | 
            -
                "        model_revision = \"_\".join(path_parts[1:4])\n",
         | 
| 39 | 
            -
                "        task = path_parts[4].capitalize()\n",
         | 
| 40 | 
            -
                "        # Extract timestamp from filepath\n",
         | 
| 41 | 
            -
                "        timestamp = filepath.stem.split(\"_\")[-1][:-3]\n",
         | 
| 42 | 
            -
                "        df.loc[model_revision, \"Timestamp\"] = timestamp\n",
         | 
| 43 | 
            -
                "\n",
         | 
| 44 | 
            -
                "        with open(filepath, \"r\") as file:\n",
         | 
| 45 | 
            -
                "            data = json.load(file)\n",
         | 
| 46 | 
            -
                "            first_result_key = next(iter(data[\"results\"]))  # gets the first key in 'results'\n",
         | 
| 47 | 
            -
                "            # TruthfulQA has two metrics, so we need to pick the `mc2` one that's reported on the leaderboard\n",
         | 
| 48 | 
            -
                "            if task == \"truthfulqa\":\n",
         | 
| 49 | 
            -
                "                value = data[\"results\"][first_result_key][\"truthfulqa_mc2\"]\n",
         | 
| 50 | 
            -
                "            else:\n",
         | 
| 51 | 
            -
                "                first_metric_key = next(iter(data[\"results\"][first_result_key]))  # gets the first key in the first result\n",
         | 
| 52 | 
            -
                "                value = data[\"results\"][first_result_key][first_metric_key]  # gets the value of the first metric\n",
         | 
| 53 | 
            -
                "            df.loc[model_revision, task] = value\n",
         | 
| 54 | 
            -
                " \n",
         | 
| 55 | 
            -
                "    df.insert(loc=0, column=\"Average\", value=df.mean(axis=1, numeric_only=True))\n",
         | 
| 56 | 
            -
                "    df = df.sort_values(by=[\"Average\"], ascending=False)\n",
         | 
| 57 | 
            -
                "    df = df.reset_index().rename(columns={\"index\": \"Model\"}).round(3)\n",
         | 
| 58 | 
            -
                "    return df"
         | 
| 59 | 
            -
               ]
         | 
| 60 | 
            -
              },
         | 
| 61 | 
            -
              {
         | 
| 62 | 
            -
               "cell_type": "code",
         | 
| 63 | 
            -
               "execution_count": 32,
         | 
| 64 | 
            -
               "metadata": {},
         | 
| 65 | 
            -
               "outputs": [],
         | 
| 66 | 
            -
               "source": [
         | 
| 67 | 
            -
                "df = get_leaderboard_df()"
         | 
| 68 | 
            -
               ]
         | 
| 69 | 
            -
              },
         | 
| 70 | 
            -
              {
         | 
| 71 | 
            -
               "cell_type": "code",
         | 
| 72 | 
            -
               "execution_count": null,
         | 
| 73 | 
            -
               "metadata": {},
         | 
| 74 | 
            -
               "outputs": [
         | 
| 75 | 
            -
                {
         | 
| 76 | 
            -
                 "data": {
         | 
| 77 | 
            -
                  "text/html": [
         | 
| 78 | 
            -
                   "<div>\n",
         | 
| 79 | 
            -
                   "<style scoped>\n",
         | 
| 80 | 
            -
                   "    .dataframe tbody tr th:only-of-type {\n",
         | 
| 81 | 
            -
                   "        vertical-align: middle;\n",
         | 
| 82 | 
            -
                   "    }\n",
         | 
| 83 | 
            -
                   "\n",
         | 
| 84 | 
            -
                   "    .dataframe tbody tr th {\n",
         | 
| 85 | 
            -
                   "        vertical-align: top;\n",
         | 
| 86 | 
            -
                   "    }\n",
         | 
| 87 | 
            -
                   "\n",
         | 
| 88 | 
            -
                   "    .dataframe thead th {\n",
         | 
| 89 | 
            -
                   "        text-align: right;\n",
         | 
| 90 | 
            -
                   "    }\n",
         | 
| 91 | 
            -
                   "</style>\n",
         | 
| 92 | 
            -
                   "<table border=\"1\" class=\"dataframe\">\n",
         | 
| 93 | 
            -
                   "  <thead>\n",
         | 
| 94 | 
            -
                   "    <tr style=\"text-align: right;\">\n",
         | 
| 95 | 
            -
                   "      <th></th>\n",
         | 
| 96 | 
            -
                   "      <th>Model</th>\n",
         | 
| 97 | 
            -
                   "      <th>Timestamp</th>\n",
         | 
| 98 | 
            -
                   "      <th>Average</th>\n",
         | 
| 99 | 
            -
                   "      <th>Truthfulqa</th>\n",
         | 
| 100 | 
            -
                   "      <th>Winogrande</th>\n",
         | 
| 101 | 
            -
                   "      <th>Gsm8k</th>\n",
         | 
| 102 | 
            -
                   "      <th>Hellaswag</th>\n",
         | 
| 103 | 
            -
                   "      <th>Arc</th>\n",
         | 
| 104 | 
            -
                   "    </tr>\n",
         | 
| 105 | 
            -
                   "  </thead>\n",
         | 
| 106 | 
            -
                   "  <tbody>\n",
         | 
| 107 | 
            -
                   "    <tr>\n",
         | 
| 108 | 
            -
                   "      <th>0</th>\n",
         | 
| 109 | 
            -
                   "      <td>Qwen_Qwen1.5-0.5B-Chat_main</td>\n",
         | 
| 110 | 
            -
                   "      <td>2024-02-28T07-35-58.803</td>\n",
         | 
| 111 | 
            -
                   "      <td>0.296</td>\n",
         | 
| 112 | 
            -
                   "      <td>0.271</td>\n",
         | 
| 113 | 
            -
                   "      <td>0.519</td>\n",
         | 
| 114 | 
            -
                   "      <td>0.039</td>\n",
         | 
| 115 | 
            -
                   "      <td>0.363</td>\n",
         | 
| 116 | 
            -
                   "      <td>0.287</td>\n",
         | 
| 117 | 
            -
                   "    </tr>\n",
         | 
| 118 | 
            -
                   "  </tbody>\n",
         | 
| 119 | 
            -
                   "</table>\n",
         | 
| 120 | 
            -
                   "</div>"
         | 
| 121 | 
            -
                  ],
         | 
| 122 | 
            -
                  "text/plain": [
         | 
| 123 | 
            -
                   "                         Model                Timestamp  Average  Truthfulqa  \\\n",
         | 
| 124 | 
            -
                   "0  Qwen_Qwen1.5-0.5B-Chat_main  2024-02-28T07-35-58.803    0.296       0.271   \n",
         | 
| 125 | 
            -
                   "\n",
         | 
| 126 | 
            -
                   "   Winogrande  Gsm8k  Hellaswag    Arc  \n",
         | 
| 127 | 
            -
                   "0       0.519  0.039      0.363  0.287  "
         | 
| 128 | 
            -
                  ]
         | 
| 129 | 
            -
                 },
         | 
| 130 | 
            -
                 "execution_count": 28,
         | 
| 131 | 
            -
                 "metadata": {},
         | 
| 132 | 
            -
                 "output_type": "execute_result"
         | 
| 133 | 
            -
                }
         | 
| 134 | 
            -
               ],
         | 
| 135 | 
            -
               "source": [
         | 
| 136 | 
            -
                "df"
         | 
| 137 | 
            -
               ]
         | 
| 138 | 
            -
              },
         | 
| 139 | 
            -
              {
         | 
| 140 | 
            -
               "cell_type": "code",
         | 
| 141 | 
            -
               "execution_count": null,
         | 
| 142 | 
            -
               "metadata": {},
         | 
| 143 | 
            -
               "outputs": [],
         | 
| 144 | 
            -
               "source": []
         | 
| 145 | 
            -
              }
         | 
| 146 | 
            -
             ],
         | 
| 147 | 
            -
             "metadata": {
         | 
| 148 | 
            -
              "kernelspec": {
         | 
| 149 | 
            -
               "display_name": "hf",
         | 
| 150 | 
            -
               "language": "python",
         | 
| 151 | 
            -
               "name": "python3"
         | 
| 152 | 
            -
              },
         | 
| 153 | 
            -
              "language_info": {
         | 
| 154 | 
            -
               "codemirror_mode": {
         | 
| 155 | 
            -
                "name": "ipython",
         | 
| 156 | 
            -
                "version": 3
         | 
| 157 | 
            -
               },
         | 
| 158 | 
            -
               "file_extension": ".py",
         | 
| 159 | 
            -
               "mimetype": "text/x-python",
         | 
| 160 | 
            -
               "name": "python",
         | 
| 161 | 
            -
               "nbconvert_exporter": "python",
         | 
| 162 | 
            -
               "pygments_lexer": "ipython3",
         | 
| 163 | 
            -
               "version": "3.10.6"
         | 
| 164 | 
            -
              }
         | 
| 165 | 
            -
             },
         | 
| 166 | 
            -
             "nbformat": 4,
         | 
| 167 | 
            -
             "nbformat_minor": 2
         | 
| 168 | 
            -
            }
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        app.py
    CHANGED
    
    | @@ -27,11 +27,10 @@ def get_leaderboard_df(): | |
| 27 | 
             
                # Extract data from each file and populate the DataFrame
         | 
| 28 | 
             
                for filepath in filepaths:
         | 
| 29 | 
             
                    path_parts = Path(filepath).parts
         | 
| 30 | 
            -
                     | 
|  | |
| 31 | 
             
                    task = path_parts[4].capitalize()
         | 
| 32 | 
            -
                     | 
| 33 | 
            -
                    timestamp = filepath.stem.split("_")[-1][:-3]
         | 
| 34 | 
            -
                    df.loc[model_revision, "Timestamp"] = timestamp
         | 
| 35 |  | 
| 36 | 
             
                    with open(filepath, "r") as file:
         | 
| 37 | 
             
                        data = json.load(file)
         | 
| @@ -58,11 +57,15 @@ def get_leaderboard_df(): | |
| 58 | 
             
                # Put IFEval in first column
         | 
| 59 | 
             
                ifeval_col = df.pop("Ifeval")
         | 
| 60 | 
             
                df.insert(1, "Ifeval", ifeval_col)
         | 
|  | |
|  | |
| 61 | 
             
                df.insert(loc=1, column="Average", value=df.mean(axis=1, numeric_only=True))
         | 
| 62 | 
             
                # Convert all values to percentage
         | 
| 63 | 
             
                df[df.select_dtypes(include=["number"]).columns] *= 100.0
         | 
| 64 | 
             
                df = df.sort_values(by=["Average"], ascending=False)
         | 
| 65 | 
             
                df = df.reset_index().rename(columns={"index": "Model"}).round(2)
         | 
|  | |
|  | |
| 66 | 
             
                return df
         | 
| 67 |  | 
| 68 |  | 
|  | |
| 27 | 
             
                # Extract data from each file and populate the DataFrame
         | 
| 28 | 
             
                for filepath in filepaths:
         | 
| 29 | 
             
                    path_parts = Path(filepath).parts
         | 
| 30 | 
            +
                    date = filepath.stem.split("_")[-1][:-3].split("T")[0]
         | 
| 31 | 
            +
                    model_revision = "_".join(path_parts[1:4]) + "_" + date
         | 
| 32 | 
             
                    task = path_parts[4].capitalize()
         | 
| 33 | 
            +
                    df.loc[model_revision, "Date"] = date
         | 
|  | |
|  | |
| 34 |  | 
| 35 | 
             
                    with open(filepath, "r") as file:
         | 
| 36 | 
             
                        data = json.load(file)
         | 
|  | |
| 57 | 
             
                # Put IFEval in first column
         | 
| 58 | 
             
                ifeval_col = df.pop("Ifeval")
         | 
| 59 | 
             
                df.insert(1, "Ifeval", ifeval_col)
         | 
| 60 | 
            +
                # Drop rows where every entry is NaN
         | 
| 61 | 
            +
                df = df.dropna(how="all", axis=0, subset=[c for c in df.columns if c != "Date"])
         | 
| 62 | 
             
                df.insert(loc=1, column="Average", value=df.mean(axis=1, numeric_only=True))
         | 
| 63 | 
             
                # Convert all values to percentage
         | 
| 64 | 
             
                df[df.select_dtypes(include=["number"]).columns] *= 100.0
         | 
| 65 | 
             
                df = df.sort_values(by=["Average"], ascending=False)
         | 
| 66 | 
             
                df = df.reset_index().rename(columns={"index": "Model"}).round(2)
         | 
| 67 | 
            +
                # Strip off date from model name
         | 
| 68 | 
            +
                df["Model"] = df["Model"].apply(lambda x: x.rsplit("_", 1)[0])
         | 
| 69 | 
             
                return df
         | 
| 70 |  | 
| 71 |  | 
    	
        debug.ipynb
    ADDED
    
    | @@ -0,0 +1,413 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
             "cells": [
         | 
| 3 | 
            +
              {
         | 
| 4 | 
            +
               "cell_type": "code",
         | 
| 5 | 
            +
               "execution_count": 1,
         | 
| 6 | 
            +
               "metadata": {},
         | 
| 7 | 
            +
               "outputs": [],
         | 
| 8 | 
            +
               "source": [
         | 
| 9 | 
            +
                "import json\n",
         | 
| 10 | 
            +
                "from pathlib import Path\n",
         | 
| 11 | 
            +
                "\n",
         | 
| 12 | 
            +
                "import gradio as gr\n",
         | 
| 13 | 
            +
                "import pandas as pd"
         | 
| 14 | 
            +
               ]
         | 
| 15 | 
            +
              },
         | 
| 16 | 
            +
              {
         | 
| 17 | 
            +
               "cell_type": "code",
         | 
| 18 | 
            +
               "execution_count": 51,
         | 
| 19 | 
            +
               "metadata": {},
         | 
| 20 | 
            +
               "outputs": [],
         | 
| 21 | 
            +
               "source": [
         | 
| 22 | 
            +
                "def get_leaderboard_df():\n",
         | 
| 23 | 
            +
                "    filepaths = list(Path(\"eval_results\").rglob(\"*.json\"))\n",
         | 
| 24 | 
            +
                "\n",
         | 
| 25 | 
            +
                "    # Parse filepaths to get unique models\n",
         | 
| 26 | 
            +
                "    models = set()\n",
         | 
| 27 | 
            +
                "    for filepath in filepaths:\n",
         | 
| 28 | 
            +
                "        path_parts = Path(filepath).parts\n",
         | 
| 29 | 
            +
                "        model_revision = \"_\".join(path_parts[1:4])\n",
         | 
| 30 | 
            +
                "        models.add(model_revision)\n",
         | 
| 31 | 
            +
                "\n",
         | 
| 32 | 
            +
                "    # Initialize DataFrame\n",
         | 
| 33 | 
            +
                "    df = pd.DataFrame(index=list(models))\n",
         | 
| 34 | 
            +
                "\n",
         | 
| 35 | 
            +
                "    # Extract data from each file and populate the DataFrame\n",
         | 
| 36 | 
            +
                "    for filepath in filepaths:\n",
         | 
| 37 | 
            +
                "        path_parts = Path(filepath).parts\n",
         | 
| 38 | 
            +
                "        date = filepath.stem.split(\"_\")[-1][:-3].split(\"T\")[0]\n",
         | 
| 39 | 
            +
                "        model_revision = \"_\".join(path_parts[1:4]) + \"_\" + date\n",
         | 
| 40 | 
            +
                "        task = path_parts[4].capitalize()\n",
         | 
| 41 | 
            +
                "        df.loc[model_revision, \"Date\"] = date\n",
         | 
| 42 | 
            +
                "\n",
         | 
| 43 | 
            +
                "        with open(filepath, \"r\") as file:\n",
         | 
| 44 | 
            +
                "            data = json.load(file)\n",
         | 
| 45 | 
            +
                "            first_result_key = next(iter(data[\"results\"]))  # gets the first key in 'results'\n",
         | 
| 46 | 
            +
                "            # TruthfulQA has two metrics, so we need to pick the `mc2` one that's reported on the leaderboard\n",
         | 
| 47 | 
            +
                "            if task == \"truthfulqa\":\n",
         | 
| 48 | 
            +
                "                value = data[\"results\"][first_result_key][\"truthfulqa_mc2\"]\n",
         | 
| 49 | 
            +
                "            else:\n",
         | 
| 50 | 
            +
                "                first_metric_key = next(iter(data[\"results\"][first_result_key]))  # gets the first key in the first result\n",
         | 
| 51 | 
            +
                "                value = data[\"results\"][first_result_key][first_metric_key]  # gets the value of the first metric\n",
         | 
| 52 | 
            +
                "            df.loc[model_revision, task] = value\n",
         | 
| 53 | 
            +
                " \n",
         | 
| 54 | 
            +
                "    # Drop rows where every entry is NaN\n",
         | 
| 55 | 
            +
                "    df = df.dropna(how=\"all\", axis=0, subset=[c for c in df.columns if c != \"Date\"])\n",
         | 
| 56 | 
            +
                "    df.insert(loc=1, column=\"Average\", value=df.mean(axis=1, numeric_only=True))\n",
         | 
| 57 | 
            +
                "    df = df.sort_values(by=[\"Average\"], ascending=False)\n",
         | 
| 58 | 
            +
                "    df = df.reset_index().rename(columns={\"index\": \"Model\"}).round(3)\n",
         | 
| 59 | 
            +
                "    # Strip off date from model name\n",
         | 
| 60 | 
            +
                "    df[\"Model\"] = df[\"Model\"].apply(lambda x: x.rsplit(\"_\", 1)[0])\n",
         | 
| 61 | 
            +
                "    return df"
         | 
| 62 | 
            +
               ]
         | 
| 63 | 
            +
              },
         | 
| 64 | 
            +
              {
         | 
| 65 | 
            +
               "cell_type": "code",
         | 
| 66 | 
            +
               "execution_count": 52,
         | 
| 67 | 
            +
               "metadata": {},
         | 
| 68 | 
            +
               "outputs": [],
         | 
| 69 | 
            +
               "source": [
         | 
| 70 | 
            +
                "df = get_leaderboard_df()"
         | 
| 71 | 
            +
               ]
         | 
| 72 | 
            +
              },
         | 
| 73 | 
            +
              {
         | 
| 74 | 
            +
               "cell_type": "code",
         | 
| 75 | 
            +
               "execution_count": 53,
         | 
| 76 | 
            +
               "metadata": {},
         | 
| 77 | 
            +
               "outputs": [
         | 
| 78 | 
            +
                {
         | 
| 79 | 
            +
                 "data": {
         | 
| 80 | 
            +
                  "text/html": [
         | 
| 81 | 
            +
                   "<div>\n",
         | 
| 82 | 
            +
                   "<style scoped>\n",
         | 
| 83 | 
            +
                   "    .dataframe tbody tr th:only-of-type {\n",
         | 
| 84 | 
            +
                   "        vertical-align: middle;\n",
         | 
| 85 | 
            +
                   "    }\n",
         | 
| 86 | 
            +
                   "\n",
         | 
| 87 | 
            +
                   "    .dataframe tbody tr th {\n",
         | 
| 88 | 
            +
                   "        vertical-align: top;\n",
         | 
| 89 | 
            +
                   "    }\n",
         | 
| 90 | 
            +
                   "\n",
         | 
| 91 | 
            +
                   "    .dataframe thead th {\n",
         | 
| 92 | 
            +
                   "        text-align: right;\n",
         | 
| 93 | 
            +
                   "    }\n",
         | 
| 94 | 
            +
                   "</style>\n",
         | 
| 95 | 
            +
                   "<table border=\"1\" class=\"dataframe\">\n",
         | 
| 96 | 
            +
                   "  <thead>\n",
         | 
| 97 | 
            +
                   "    <tr style=\"text-align: right;\">\n",
         | 
| 98 | 
            +
                   "      <th></th>\n",
         | 
| 99 | 
            +
                   "      <th>Model</th>\n",
         | 
| 100 | 
            +
                   "      <th>Date</th>\n",
         | 
| 101 | 
            +
                   "      <th>Average</th>\n",
         | 
| 102 | 
            +
                   "      <th>Ifeval</th>\n",
         | 
| 103 | 
            +
                   "      <th>Truthfulqa</th>\n",
         | 
| 104 | 
            +
                   "      <th>Winogrande</th>\n",
         | 
| 105 | 
            +
                   "      <th>Gsm8k</th>\n",
         | 
| 106 | 
            +
                   "      <th>Mmlu</th>\n",
         | 
| 107 | 
            +
                   "      <th>Hellaswag</th>\n",
         | 
| 108 | 
            +
                   "      <th>Arc</th>\n",
         | 
| 109 | 
            +
                   "    </tr>\n",
         | 
| 110 | 
            +
                   "  </thead>\n",
         | 
| 111 | 
            +
                   "  <tbody>\n",
         | 
| 112 | 
            +
                   "    <tr>\n",
         | 
| 113 | 
            +
                   "      <th>0</th>\n",
         | 
| 114 | 
            +
                   "      <td>NousResearch_Nous-Hermes-2-Mixtral-8x7B-DPO_main</td>\n",
         | 
| 115 | 
            +
                   "      <td>2024-03-02</td>\n",
         | 
| 116 | 
            +
                   "      <td>0.617</td>\n",
         | 
| 117 | 
            +
                   "      <td>0.553</td>\n",
         | 
| 118 | 
            +
                   "      <td>0.477</td>\n",
         | 
| 119 | 
            +
                   "      <td>0.785</td>\n",
         | 
| 120 | 
            +
                   "      <td>0.622</td>\n",
         | 
| 121 | 
            +
                   "      <td>0.51</td>\n",
         | 
| 122 | 
            +
                   "      <td>0.677</td>\n",
         | 
| 123 | 
            +
                   "      <td>0.698</td>\n",
         | 
| 124 | 
            +
                   "    </tr>\n",
         | 
| 125 | 
            +
                   "    <tr>\n",
         | 
| 126 | 
            +
                   "      <th>1</th>\n",
         | 
| 127 | 
            +
                   "      <td>NousResearch_Nous-Hermes-2-Yi-34B_main</td>\n",
         | 
| 128 | 
            +
                   "      <td>2024-03-04</td>\n",
         | 
| 129 | 
            +
                   "      <td>0.604</td>\n",
         | 
| 130 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 131 | 
            +
                   "      <td>0.439</td>\n",
         | 
| 132 | 
            +
                   "      <td>0.806</td>\n",
         | 
| 133 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 134 | 
            +
                   "      <td>0.48</td>\n",
         | 
| 135 | 
            +
                   "      <td>0.640</td>\n",
         | 
| 136 | 
            +
                   "      <td>0.654</td>\n",
         | 
| 137 | 
            +
                   "    </tr>\n",
         | 
| 138 | 
            +
                   "    <tr>\n",
         | 
| 139 | 
            +
                   "      <th>2</th>\n",
         | 
| 140 | 
            +
                   "      <td>mistralai_Mixtral-8x7B-Instruct-v0.1_main</td>\n",
         | 
| 141 | 
            +
                   "      <td>2024-03-02</td>\n",
         | 
| 142 | 
            +
                   "      <td>0.603</td>\n",
         | 
| 143 | 
            +
                   "      <td>0.497</td>\n",
         | 
| 144 | 
            +
                   "      <td>0.554</td>\n",
         | 
| 145 | 
            +
                   "      <td>0.736</td>\n",
         | 
| 146 | 
            +
                   "      <td>0.599</td>\n",
         | 
| 147 | 
            +
                   "      <td>0.43</td>\n",
         | 
| 148 | 
            +
                   "      <td>0.709</td>\n",
         | 
| 149 | 
            +
                   "      <td>0.698</td>\n",
         | 
| 150 | 
            +
                   "    </tr>\n",
         | 
| 151 | 
            +
                   "    <tr>\n",
         | 
| 152 | 
            +
                   "      <th>3</th>\n",
         | 
| 153 | 
            +
                   "      <td>deepseek-ai_deepseek-llm-67b-chat_main</td>\n",
         | 
| 154 | 
            +
                   "      <td>2024-03-04</td>\n",
         | 
| 155 | 
            +
                   "      <td>0.603</td>\n",
         | 
| 156 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 157 | 
            +
                   "      <td>0.395</td>\n",
         | 
| 158 | 
            +
                   "      <td>0.792</td>\n",
         | 
| 159 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 160 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 161 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 162 | 
            +
                   "      <td>0.622</td>\n",
         | 
| 163 | 
            +
                   "    </tr>\n",
         | 
| 164 | 
            +
                   "    <tr>\n",
         | 
| 165 | 
            +
                   "      <th>4</th>\n",
         | 
| 166 | 
            +
                   "      <td>deepseek-ai_deepseek-llm-67b-chat_main</td>\n",
         | 
| 167 | 
            +
                   "      <td>2024-03-05</td>\n",
         | 
| 168 | 
            +
                   "      <td>0.585</td>\n",
         | 
| 169 | 
            +
                   "      <td>0.505</td>\n",
         | 
| 170 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 171 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 172 | 
            +
                   "      <td>0.761</td>\n",
         | 
| 173 | 
            +
                   "      <td>0.42</td>\n",
         | 
| 174 | 
            +
                   "      <td>0.654</td>\n",
         | 
| 175 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 176 | 
            +
                   "    </tr>\n",
         | 
| 177 | 
            +
                   "    <tr>\n",
         | 
| 178 | 
            +
                   "      <th>...</th>\n",
         | 
| 179 | 
            +
                   "      <td>...</td>\n",
         | 
| 180 | 
            +
                   "      <td>...</td>\n",
         | 
| 181 | 
            +
                   "      <td>...</td>\n",
         | 
| 182 | 
            +
                   "      <td>...</td>\n",
         | 
| 183 | 
            +
                   "      <td>...</td>\n",
         | 
| 184 | 
            +
                   "      <td>...</td>\n",
         | 
| 185 | 
            +
                   "      <td>...</td>\n",
         | 
| 186 | 
            +
                   "      <td>...</td>\n",
         | 
| 187 | 
            +
                   "      <td>...</td>\n",
         | 
| 188 | 
            +
                   "      <td>...</td>\n",
         | 
| 189 | 
            +
                   "    </tr>\n",
         | 
| 190 | 
            +
                   "    <tr>\n",
         | 
| 191 | 
            +
                   "      <th>269</th>\n",
         | 
| 192 | 
            +
                   "      <td>HuggingFaceH4_starcoder2-15b-ift_v18.0</td>\n",
         | 
| 193 | 
            +
                   "      <td>2024-03-10</td>\n",
         | 
| 194 | 
            +
                   "      <td>0.089</td>\n",
         | 
| 195 | 
            +
                   "      <td>0.170</td>\n",
         | 
| 196 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 197 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 198 | 
            +
                   "      <td>0.008</td>\n",
         | 
| 199 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 200 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 201 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 202 | 
            +
                   "    </tr>\n",
         | 
| 203 | 
            +
                   "    <tr>\n",
         | 
| 204 | 
            +
                   "      <th>270</th>\n",
         | 
| 205 | 
            +
                   "      <td>HuggingFaceH4_mistral-7b-ift_v49.0</td>\n",
         | 
| 206 | 
            +
                   "      <td>2024-03-07</td>\n",
         | 
| 207 | 
            +
                   "      <td>0.086</td>\n",
         | 
| 208 | 
            +
                   "      <td>0.172</td>\n",
         | 
| 209 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 210 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 211 | 
            +
                   "      <td>0.000</td>\n",
         | 
| 212 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 213 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 214 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 215 | 
            +
                   "    </tr>\n",
         | 
| 216 | 
            +
                   "    <tr>\n",
         | 
| 217 | 
            +
                   "      <th>271</th>\n",
         | 
| 218 | 
            +
                   "      <td>HuggingFaceH4_starchat-beta_main</td>\n",
         | 
| 219 | 
            +
                   "      <td>2024-03-12</td>\n",
         | 
| 220 | 
            +
                   "      <td>0.079</td>\n",
         | 
| 221 | 
            +
                   "      <td>0.079</td>\n",
         | 
| 222 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 223 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 224 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 225 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 226 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 227 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 228 | 
            +
                   "    </tr>\n",
         | 
| 229 | 
            +
                   "    <tr>\n",
         | 
| 230 | 
            +
                   "      <th>272</th>\n",
         | 
| 231 | 
            +
                   "      <td>HuggingFaceH4_starcoder2-15b-ift_v7.0</td>\n",
         | 
| 232 | 
            +
                   "      <td>2024-03-10</td>\n",
         | 
| 233 | 
            +
                   "      <td>0.070</td>\n",
         | 
| 234 | 
            +
                   "      <td>0.107</td>\n",
         | 
| 235 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 236 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 237 | 
            +
                   "      <td>0.032</td>\n",
         | 
| 238 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 239 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 240 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 241 | 
            +
                   "    </tr>\n",
         | 
| 242 | 
            +
                   "    <tr>\n",
         | 
| 243 | 
            +
                   "      <th>273</th>\n",
         | 
| 244 | 
            +
                   "      <td>HuggingFaceH4_zephyr-7b-beta-ift_v1.1</td>\n",
         | 
| 245 | 
            +
                   "      <td>2024-03-13</td>\n",
         | 
| 246 | 
            +
                   "      <td>0.043</td>\n",
         | 
| 247 | 
            +
                   "      <td>0.087</td>\n",
         | 
| 248 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 249 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 250 | 
            +
                   "      <td>0.000</td>\n",
         | 
| 251 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 252 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 253 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 254 | 
            +
                   "    </tr>\n",
         | 
| 255 | 
            +
                   "  </tbody>\n",
         | 
| 256 | 
            +
                   "</table>\n",
         | 
| 257 | 
            +
                   "<p>274 rows × 10 columns</p>\n",
         | 
| 258 | 
            +
                   "</div>"
         | 
| 259 | 
            +
                  ],
         | 
| 260 | 
            +
                  "text/plain": [
         | 
| 261 | 
            +
                   "                                                Model        Date  Average  \\\n",
         | 
| 262 | 
            +
                   "0    NousResearch_Nous-Hermes-2-Mixtral-8x7B-DPO_main  2024-03-02    0.617   \n",
         | 
| 263 | 
            +
                   "1              NousResearch_Nous-Hermes-2-Yi-34B_main  2024-03-04    0.604   \n",
         | 
| 264 | 
            +
                   "2           mistralai_Mixtral-8x7B-Instruct-v0.1_main  2024-03-02    0.603   \n",
         | 
| 265 | 
            +
                   "3              deepseek-ai_deepseek-llm-67b-chat_main  2024-03-04    0.603   \n",
         | 
| 266 | 
            +
                   "4              deepseek-ai_deepseek-llm-67b-chat_main  2024-03-05    0.585   \n",
         | 
| 267 | 
            +
                   "..                                                ...         ...      ...   \n",
         | 
| 268 | 
            +
                   "269            HuggingFaceH4_starcoder2-15b-ift_v18.0  2024-03-10    0.089   \n",
         | 
| 269 | 
            +
                   "270                HuggingFaceH4_mistral-7b-ift_v49.0  2024-03-07    0.086   \n",
         | 
| 270 | 
            +
                   "271                  HuggingFaceH4_starchat-beta_main  2024-03-12    0.079   \n",
         | 
| 271 | 
            +
                   "272             HuggingFaceH4_starcoder2-15b-ift_v7.0  2024-03-10    0.070   \n",
         | 
| 272 | 
            +
                   "273             HuggingFaceH4_zephyr-7b-beta-ift_v1.1  2024-03-13    0.043   \n",
         | 
| 273 | 
            +
                   "\n",
         | 
| 274 | 
            +
                   "     Ifeval  Truthfulqa  Winogrande  Gsm8k  Mmlu  Hellaswag    Arc  \n",
         | 
| 275 | 
            +
                   "0     0.553       0.477       0.785  0.622  0.51      0.677  0.698  \n",
         | 
| 276 | 
            +
                   "1       NaN       0.439       0.806    NaN  0.48      0.640  0.654  \n",
         | 
| 277 | 
            +
                   "2     0.497       0.554       0.736  0.599  0.43      0.709  0.698  \n",
         | 
| 278 | 
            +
                   "3       NaN       0.395       0.792    NaN   NaN        NaN  0.622  \n",
         | 
| 279 | 
            +
                   "4     0.505         NaN         NaN  0.761  0.42      0.654    NaN  \n",
         | 
| 280 | 
            +
                   "..      ...         ...         ...    ...   ...        ...    ...  \n",
         | 
| 281 | 
            +
                   "269   0.170         NaN         NaN  0.008   NaN        NaN    NaN  \n",
         | 
| 282 | 
            +
                   "270   0.172         NaN         NaN  0.000   NaN        NaN    NaN  \n",
         | 
| 283 | 
            +
                   "271   0.079         NaN         NaN    NaN   NaN        NaN    NaN  \n",
         | 
| 284 | 
            +
                   "272   0.107         NaN         NaN  0.032   NaN        NaN    NaN  \n",
         | 
| 285 | 
            +
                   "273   0.087         NaN         NaN  0.000   NaN        NaN    NaN  \n",
         | 
| 286 | 
            +
                   "\n",
         | 
| 287 | 
            +
                   "[274 rows x 10 columns]"
         | 
| 288 | 
            +
                  ]
         | 
| 289 | 
            +
                 },
         | 
| 290 | 
            +
                 "execution_count": 53,
         | 
| 291 | 
            +
                 "metadata": {},
         | 
| 292 | 
            +
                 "output_type": "execute_result"
         | 
| 293 | 
            +
                }
         | 
| 294 | 
            +
               ],
         | 
| 295 | 
            +
               "source": [
         | 
| 296 | 
            +
                "df"
         | 
| 297 | 
            +
               ]
         | 
| 298 | 
            +
              },
         | 
| 299 | 
            +
              {
         | 
| 300 | 
            +
               "cell_type": "code",
         | 
| 301 | 
            +
               "execution_count": 32,
         | 
| 302 | 
            +
               "metadata": {},
         | 
| 303 | 
            +
               "outputs": [
         | 
| 304 | 
            +
                {
         | 
| 305 | 
            +
                 "data": {
         | 
| 306 | 
            +
                  "text/html": [
         | 
| 307 | 
            +
                   "<div>\n",
         | 
| 308 | 
            +
                   "<style scoped>\n",
         | 
| 309 | 
            +
                   "    .dataframe tbody tr th:only-of-type {\n",
         | 
| 310 | 
            +
                   "        vertical-align: middle;\n",
         | 
| 311 | 
            +
                   "    }\n",
         | 
| 312 | 
            +
                   "\n",
         | 
| 313 | 
            +
                   "    .dataframe tbody tr th {\n",
         | 
| 314 | 
            +
                   "        vertical-align: top;\n",
         | 
| 315 | 
            +
                   "    }\n",
         | 
| 316 | 
            +
                   "\n",
         | 
| 317 | 
            +
                   "    .dataframe thead th {\n",
         | 
| 318 | 
            +
                   "        text-align: right;\n",
         | 
| 319 | 
            +
                   "    }\n",
         | 
| 320 | 
            +
                   "</style>\n",
         | 
| 321 | 
            +
                   "<table border=\"1\" class=\"dataframe\">\n",
         | 
| 322 | 
            +
                   "  <thead>\n",
         | 
| 323 | 
            +
                   "    <tr style=\"text-align: right;\">\n",
         | 
| 324 | 
            +
                   "      <th></th>\n",
         | 
| 325 | 
            +
                   "      <th>Model</th>\n",
         | 
| 326 | 
            +
                   "      <th>Average</th>\n",
         | 
| 327 | 
            +
                   "      <th>Ifeval</th>\n",
         | 
| 328 | 
            +
                   "      <th>Truthfulqa</th>\n",
         | 
| 329 | 
            +
                   "      <th>Winogrande</th>\n",
         | 
| 330 | 
            +
                   "      <th>Gsm8k</th>\n",
         | 
| 331 | 
            +
                   "      <th>Mmlu</th>\n",
         | 
| 332 | 
            +
                   "      <th>Hellaswag</th>\n",
         | 
| 333 | 
            +
                   "      <th>Arc</th>\n",
         | 
| 334 | 
            +
                   "    </tr>\n",
         | 
| 335 | 
            +
                   "  </thead>\n",
         | 
| 336 | 
            +
                   "  <tbody>\n",
         | 
| 337 | 
            +
                   "    <tr>\n",
         | 
| 338 | 
            +
                   "      <th>50</th>\n",
         | 
| 339 | 
            +
                   "      <td>HuggingFaceH4_mistral-7b-ift_v48.56_2024-03-08</td>\n",
         | 
| 340 | 
            +
                   "      <td>0.49</td>\n",
         | 
| 341 | 
            +
                   "      <td>0.418</td>\n",
         | 
| 342 | 
            +
                   "      <td>0.359</td>\n",
         | 
| 343 | 
            +
                   "      <td>0.672</td>\n",
         | 
| 344 | 
            +
                   "      <td>0.453</td>\n",
         | 
| 345 | 
            +
                   "      <td>0.33</td>\n",
         | 
| 346 | 
            +
                   "      <td>0.656</td>\n",
         | 
| 347 | 
            +
                   "      <td>0.545</td>\n",
         | 
| 348 | 
            +
                   "    </tr>\n",
         | 
| 349 | 
            +
                   "    <tr>\n",
         | 
| 350 | 
            +
                   "      <th>532</th>\n",
         | 
| 351 | 
            +
                   "      <td>HuggingFaceH4_mistral-7b-ift_v48.56</td>\n",
         | 
| 352 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 353 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 354 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 355 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 356 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 357 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 358 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 359 | 
            +
                   "      <td>NaN</td>\n",
         | 
| 360 | 
            +
                   "    </tr>\n",
         | 
| 361 | 
            +
                   "  </tbody>\n",
         | 
| 362 | 
            +
                   "</table>\n",
         | 
| 363 | 
            +
                   "</div>"
         | 
| 364 | 
            +
                  ],
         | 
| 365 | 
            +
                  "text/plain": [
         | 
| 366 | 
            +
                   "                                              Model  Average  Ifeval  \\\n",
         | 
| 367 | 
            +
                   "50   HuggingFaceH4_mistral-7b-ift_v48.56_2024-03-08     0.49   0.418   \n",
         | 
| 368 | 
            +
                   "532             HuggingFaceH4_mistral-7b-ift_v48.56      NaN     NaN   \n",
         | 
| 369 | 
            +
                   "\n",
         | 
| 370 | 
            +
                   "     Truthfulqa  Winogrande  Gsm8k  Mmlu  Hellaswag    Arc  \n",
         | 
| 371 | 
            +
                   "50        0.359       0.672  0.453  0.33      0.656  0.545  \n",
         | 
| 372 | 
            +
                   "532         NaN         NaN    NaN   NaN        NaN    NaN  "
         | 
| 373 | 
            +
                  ]
         | 
| 374 | 
            +
                 },
         | 
| 375 | 
            +
                 "execution_count": 32,
         | 
| 376 | 
            +
                 "metadata": {},
         | 
| 377 | 
            +
                 "output_type": "execute_result"
         | 
| 378 | 
            +
                }
         | 
| 379 | 
            +
               ],
         | 
| 380 | 
            +
               "source": [
         | 
| 381 | 
            +
                "df[df['Model'].str.contains(\"HuggingFaceH4_mistral-7b-ift_v48.56\")]"
         | 
| 382 | 
            +
               ]
         | 
| 383 | 
            +
              },
         | 
| 384 | 
            +
              {
         | 
| 385 | 
            +
               "cell_type": "code",
         | 
| 386 | 
            +
               "execution_count": null,
         | 
| 387 | 
            +
               "metadata": {},
         | 
| 388 | 
            +
               "outputs": [],
         | 
| 389 | 
            +
               "source": []
         | 
| 390 | 
            +
              }
         | 
| 391 | 
            +
             ],
         | 
| 392 | 
            +
             "metadata": {
         | 
| 393 | 
            +
              "kernelspec": {
         | 
| 394 | 
            +
               "display_name": "hf",
         | 
| 395 | 
            +
               "language": "python",
         | 
| 396 | 
            +
               "name": "python3"
         | 
| 397 | 
            +
              },
         | 
| 398 | 
            +
              "language_info": {
         | 
| 399 | 
            +
               "codemirror_mode": {
         | 
| 400 | 
            +
                "name": "ipython",
         | 
| 401 | 
            +
                "version": 3
         | 
| 402 | 
            +
               },
         | 
| 403 | 
            +
               "file_extension": ".py",
         | 
| 404 | 
            +
               "mimetype": "text/x-python",
         | 
| 405 | 
            +
               "name": "python",
         | 
| 406 | 
            +
               "nbconvert_exporter": "python",
         | 
| 407 | 
            +
               "pygments_lexer": "ipython3",
         | 
| 408 | 
            +
               "version": "3.10.6"
         | 
| 409 | 
            +
              }
         | 
| 410 | 
            +
             },
         | 
| 411 | 
            +
             "nbformat": 4,
         | 
| 412 | 
            +
             "nbformat_minor": 2
         | 
| 413 | 
            +
            }
         | 
 
			

