Unstack models by date
Browse files- a.ipynb +0 -168
- app.py +7 -4
- debug.ipynb +413 -0
a.ipynb
DELETED
@@ -1,168 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": 1,
|
6 |
-
"metadata": {},
|
7 |
-
"outputs": [],
|
8 |
-
"source": [
|
9 |
-
"import json\n",
|
10 |
-
"from pathlib import Path\n",
|
11 |
-
"\n",
|
12 |
-
"import gradio as gr\n",
|
13 |
-
"import pandas as pd"
|
14 |
-
]
|
15 |
-
},
|
16 |
-
{
|
17 |
-
"cell_type": "code",
|
18 |
-
"execution_count": 31,
|
19 |
-
"metadata": {},
|
20 |
-
"outputs": [],
|
21 |
-
"source": [
|
22 |
-
"def get_leaderboard_df():\n",
|
23 |
-
" filepaths = list(Path(\"eval_results\").rglob(\"*.json\"))\n",
|
24 |
-
"\n",
|
25 |
-
" # Parse filepaths to get unique models\n",
|
26 |
-
" models = set()\n",
|
27 |
-
" for filepath in filepaths:\n",
|
28 |
-
" path_parts = Path(filepath).parts\n",
|
29 |
-
" model_revision = \"_\".join(path_parts[1:4])\n",
|
30 |
-
" models.add(model_revision)\n",
|
31 |
-
"\n",
|
32 |
-
" # Initialize DataFrame\n",
|
33 |
-
" df = pd.DataFrame(index=list(models))\n",
|
34 |
-
"\n",
|
35 |
-
" # Extract data from each file and populate the DataFrame\n",
|
36 |
-
" for filepath in filepaths:\n",
|
37 |
-
" path_parts = Path(filepath).parts\n",
|
38 |
-
" model_revision = \"_\".join(path_parts[1:4])\n",
|
39 |
-
" task = path_parts[4].capitalize()\n",
|
40 |
-
" # Extract timestamp from filepath\n",
|
41 |
-
" timestamp = filepath.stem.split(\"_\")[-1][:-3]\n",
|
42 |
-
" df.loc[model_revision, \"Timestamp\"] = timestamp\n",
|
43 |
-
"\n",
|
44 |
-
" with open(filepath, \"r\") as file:\n",
|
45 |
-
" data = json.load(file)\n",
|
46 |
-
" first_result_key = next(iter(data[\"results\"])) # gets the first key in 'results'\n",
|
47 |
-
" # TruthfulQA has two metrics, so we need to pick the `mc2` one that's reported on the leaderboard\n",
|
48 |
-
" if task == \"truthfulqa\":\n",
|
49 |
-
" value = data[\"results\"][first_result_key][\"truthfulqa_mc2\"]\n",
|
50 |
-
" else:\n",
|
51 |
-
" first_metric_key = next(iter(data[\"results\"][first_result_key])) # gets the first key in the first result\n",
|
52 |
-
" value = data[\"results\"][first_result_key][first_metric_key] # gets the value of the first metric\n",
|
53 |
-
" df.loc[model_revision, task] = value\n",
|
54 |
-
" \n",
|
55 |
-
" df.insert(loc=0, column=\"Average\", value=df.mean(axis=1, numeric_only=True))\n",
|
56 |
-
" df = df.sort_values(by=[\"Average\"], ascending=False)\n",
|
57 |
-
" df = df.reset_index().rename(columns={\"index\": \"Model\"}).round(3)\n",
|
58 |
-
" return df"
|
59 |
-
]
|
60 |
-
},
|
61 |
-
{
|
62 |
-
"cell_type": "code",
|
63 |
-
"execution_count": 32,
|
64 |
-
"metadata": {},
|
65 |
-
"outputs": [],
|
66 |
-
"source": [
|
67 |
-
"df = get_leaderboard_df()"
|
68 |
-
]
|
69 |
-
},
|
70 |
-
{
|
71 |
-
"cell_type": "code",
|
72 |
-
"execution_count": null,
|
73 |
-
"metadata": {},
|
74 |
-
"outputs": [
|
75 |
-
{
|
76 |
-
"data": {
|
77 |
-
"text/html": [
|
78 |
-
"<div>\n",
|
79 |
-
"<style scoped>\n",
|
80 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
81 |
-
" vertical-align: middle;\n",
|
82 |
-
" }\n",
|
83 |
-
"\n",
|
84 |
-
" .dataframe tbody tr th {\n",
|
85 |
-
" vertical-align: top;\n",
|
86 |
-
" }\n",
|
87 |
-
"\n",
|
88 |
-
" .dataframe thead th {\n",
|
89 |
-
" text-align: right;\n",
|
90 |
-
" }\n",
|
91 |
-
"</style>\n",
|
92 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
93 |
-
" <thead>\n",
|
94 |
-
" <tr style=\"text-align: right;\">\n",
|
95 |
-
" <th></th>\n",
|
96 |
-
" <th>Model</th>\n",
|
97 |
-
" <th>Timestamp</th>\n",
|
98 |
-
" <th>Average</th>\n",
|
99 |
-
" <th>Truthfulqa</th>\n",
|
100 |
-
" <th>Winogrande</th>\n",
|
101 |
-
" <th>Gsm8k</th>\n",
|
102 |
-
" <th>Hellaswag</th>\n",
|
103 |
-
" <th>Arc</th>\n",
|
104 |
-
" </tr>\n",
|
105 |
-
" </thead>\n",
|
106 |
-
" <tbody>\n",
|
107 |
-
" <tr>\n",
|
108 |
-
" <th>0</th>\n",
|
109 |
-
" <td>Qwen_Qwen1.5-0.5B-Chat_main</td>\n",
|
110 |
-
" <td>2024-02-28T07-35-58.803</td>\n",
|
111 |
-
" <td>0.296</td>\n",
|
112 |
-
" <td>0.271</td>\n",
|
113 |
-
" <td>0.519</td>\n",
|
114 |
-
" <td>0.039</td>\n",
|
115 |
-
" <td>0.363</td>\n",
|
116 |
-
" <td>0.287</td>\n",
|
117 |
-
" </tr>\n",
|
118 |
-
" </tbody>\n",
|
119 |
-
"</table>\n",
|
120 |
-
"</div>"
|
121 |
-
],
|
122 |
-
"text/plain": [
|
123 |
-
" Model Timestamp Average Truthfulqa \\\n",
|
124 |
-
"0 Qwen_Qwen1.5-0.5B-Chat_main 2024-02-28T07-35-58.803 0.296 0.271 \n",
|
125 |
-
"\n",
|
126 |
-
" Winogrande Gsm8k Hellaswag Arc \n",
|
127 |
-
"0 0.519 0.039 0.363 0.287 "
|
128 |
-
]
|
129 |
-
},
|
130 |
-
"execution_count": 28,
|
131 |
-
"metadata": {},
|
132 |
-
"output_type": "execute_result"
|
133 |
-
}
|
134 |
-
],
|
135 |
-
"source": [
|
136 |
-
"df"
|
137 |
-
]
|
138 |
-
},
|
139 |
-
{
|
140 |
-
"cell_type": "code",
|
141 |
-
"execution_count": null,
|
142 |
-
"metadata": {},
|
143 |
-
"outputs": [],
|
144 |
-
"source": []
|
145 |
-
}
|
146 |
-
],
|
147 |
-
"metadata": {
|
148 |
-
"kernelspec": {
|
149 |
-
"display_name": "hf",
|
150 |
-
"language": "python",
|
151 |
-
"name": "python3"
|
152 |
-
},
|
153 |
-
"language_info": {
|
154 |
-
"codemirror_mode": {
|
155 |
-
"name": "ipython",
|
156 |
-
"version": 3
|
157 |
-
},
|
158 |
-
"file_extension": ".py",
|
159 |
-
"mimetype": "text/x-python",
|
160 |
-
"name": "python",
|
161 |
-
"nbconvert_exporter": "python",
|
162 |
-
"pygments_lexer": "ipython3",
|
163 |
-
"version": "3.10.6"
|
164 |
-
}
|
165 |
-
},
|
166 |
-
"nbformat": 4,
|
167 |
-
"nbformat_minor": 2
|
168 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -27,11 +27,10 @@ def get_leaderboard_df():
|
|
27 |
# Extract data from each file and populate the DataFrame
|
28 |
for filepath in filepaths:
|
29 |
path_parts = Path(filepath).parts
|
30 |
-
|
|
|
31 |
task = path_parts[4].capitalize()
|
32 |
-
|
33 |
-
timestamp = filepath.stem.split("_")[-1][:-3]
|
34 |
-
df.loc[model_revision, "Timestamp"] = timestamp
|
35 |
|
36 |
with open(filepath, "r") as file:
|
37 |
data = json.load(file)
|
@@ -58,11 +57,15 @@ def get_leaderboard_df():
|
|
58 |
# Put IFEval in first column
|
59 |
ifeval_col = df.pop("Ifeval")
|
60 |
df.insert(1, "Ifeval", ifeval_col)
|
|
|
|
|
61 |
df.insert(loc=1, column="Average", value=df.mean(axis=1, numeric_only=True))
|
62 |
# Convert all values to percentage
|
63 |
df[df.select_dtypes(include=["number"]).columns] *= 100.0
|
64 |
df = df.sort_values(by=["Average"], ascending=False)
|
65 |
df = df.reset_index().rename(columns={"index": "Model"}).round(2)
|
|
|
|
|
66 |
return df
|
67 |
|
68 |
|
|
|
27 |
# Extract data from each file and populate the DataFrame
|
28 |
for filepath in filepaths:
|
29 |
path_parts = Path(filepath).parts
|
30 |
+
date = filepath.stem.split("_")[-1][:-3].split("T")[0]
|
31 |
+
model_revision = "_".join(path_parts[1:4]) + "_" + date
|
32 |
task = path_parts[4].capitalize()
|
33 |
+
df.loc[model_revision, "Date"] = date
|
|
|
|
|
34 |
|
35 |
with open(filepath, "r") as file:
|
36 |
data = json.load(file)
|
|
|
57 |
# Put IFEval in first column
|
58 |
ifeval_col = df.pop("Ifeval")
|
59 |
df.insert(1, "Ifeval", ifeval_col)
|
60 |
+
# Drop rows where every entry is NaN
|
61 |
+
df = df.dropna(how="all", axis=0, subset=[c for c in df.columns if c != "Date"])
|
62 |
df.insert(loc=1, column="Average", value=df.mean(axis=1, numeric_only=True))
|
63 |
# Convert all values to percentage
|
64 |
df[df.select_dtypes(include=["number"]).columns] *= 100.0
|
65 |
df = df.sort_values(by=["Average"], ascending=False)
|
66 |
df = df.reset_index().rename(columns={"index": "Model"}).round(2)
|
67 |
+
# Strip off date from model name
|
68 |
+
df["Model"] = df["Model"].apply(lambda x: x.rsplit("_", 1)[0])
|
69 |
return df
|
70 |
|
71 |
|
debug.ipynb
ADDED
@@ -0,0 +1,413 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import json\n",
|
10 |
+
"from pathlib import Path\n",
|
11 |
+
"\n",
|
12 |
+
"import gradio as gr\n",
|
13 |
+
"import pandas as pd"
|
14 |
+
]
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"cell_type": "code",
|
18 |
+
"execution_count": 51,
|
19 |
+
"metadata": {},
|
20 |
+
"outputs": [],
|
21 |
+
"source": [
|
22 |
+
"def get_leaderboard_df():\n",
|
23 |
+
" filepaths = list(Path(\"eval_results\").rglob(\"*.json\"))\n",
|
24 |
+
"\n",
|
25 |
+
" # Parse filepaths to get unique models\n",
|
26 |
+
" models = set()\n",
|
27 |
+
" for filepath in filepaths:\n",
|
28 |
+
" path_parts = Path(filepath).parts\n",
|
29 |
+
" model_revision = \"_\".join(path_parts[1:4])\n",
|
30 |
+
" models.add(model_revision)\n",
|
31 |
+
"\n",
|
32 |
+
" # Initialize DataFrame\n",
|
33 |
+
" df = pd.DataFrame(index=list(models))\n",
|
34 |
+
"\n",
|
35 |
+
" # Extract data from each file and populate the DataFrame\n",
|
36 |
+
" for filepath in filepaths:\n",
|
37 |
+
" path_parts = Path(filepath).parts\n",
|
38 |
+
" date = filepath.stem.split(\"_\")[-1][:-3].split(\"T\")[0]\n",
|
39 |
+
" model_revision = \"_\".join(path_parts[1:4]) + \"_\" + date\n",
|
40 |
+
" task = path_parts[4].capitalize()\n",
|
41 |
+
" df.loc[model_revision, \"Date\"] = date\n",
|
42 |
+
"\n",
|
43 |
+
" with open(filepath, \"r\") as file:\n",
|
44 |
+
" data = json.load(file)\n",
|
45 |
+
" first_result_key = next(iter(data[\"results\"])) # gets the first key in 'results'\n",
|
46 |
+
" # TruthfulQA has two metrics, so we need to pick the `mc2` one that's reported on the leaderboard\n",
|
47 |
+
" if task == \"truthfulqa\":\n",
|
48 |
+
" value = data[\"results\"][first_result_key][\"truthfulqa_mc2\"]\n",
|
49 |
+
" else:\n",
|
50 |
+
" first_metric_key = next(iter(data[\"results\"][first_result_key])) # gets the first key in the first result\n",
|
51 |
+
" value = data[\"results\"][first_result_key][first_metric_key] # gets the value of the first metric\n",
|
52 |
+
" df.loc[model_revision, task] = value\n",
|
53 |
+
" \n",
|
54 |
+
" # Drop rows where every entry is NaN\n",
|
55 |
+
" df = df.dropna(how=\"all\", axis=0, subset=[c for c in df.columns if c != \"Date\"])\n",
|
56 |
+
" df.insert(loc=1, column=\"Average\", value=df.mean(axis=1, numeric_only=True))\n",
|
57 |
+
" df = df.sort_values(by=[\"Average\"], ascending=False)\n",
|
58 |
+
" df = df.reset_index().rename(columns={\"index\": \"Model\"}).round(3)\n",
|
59 |
+
" # Strip off date from model name\n",
|
60 |
+
" df[\"Model\"] = df[\"Model\"].apply(lambda x: x.rsplit(\"_\", 1)[0])\n",
|
61 |
+
" return df"
|
62 |
+
]
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"cell_type": "code",
|
66 |
+
"execution_count": 52,
|
67 |
+
"metadata": {},
|
68 |
+
"outputs": [],
|
69 |
+
"source": [
|
70 |
+
"df = get_leaderboard_df()"
|
71 |
+
]
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"cell_type": "code",
|
75 |
+
"execution_count": 53,
|
76 |
+
"metadata": {},
|
77 |
+
"outputs": [
|
78 |
+
{
|
79 |
+
"data": {
|
80 |
+
"text/html": [
|
81 |
+
"<div>\n",
|
82 |
+
"<style scoped>\n",
|
83 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
84 |
+
" vertical-align: middle;\n",
|
85 |
+
" }\n",
|
86 |
+
"\n",
|
87 |
+
" .dataframe tbody tr th {\n",
|
88 |
+
" vertical-align: top;\n",
|
89 |
+
" }\n",
|
90 |
+
"\n",
|
91 |
+
" .dataframe thead th {\n",
|
92 |
+
" text-align: right;\n",
|
93 |
+
" }\n",
|
94 |
+
"</style>\n",
|
95 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
96 |
+
" <thead>\n",
|
97 |
+
" <tr style=\"text-align: right;\">\n",
|
98 |
+
" <th></th>\n",
|
99 |
+
" <th>Model</th>\n",
|
100 |
+
" <th>Date</th>\n",
|
101 |
+
" <th>Average</th>\n",
|
102 |
+
" <th>Ifeval</th>\n",
|
103 |
+
" <th>Truthfulqa</th>\n",
|
104 |
+
" <th>Winogrande</th>\n",
|
105 |
+
" <th>Gsm8k</th>\n",
|
106 |
+
" <th>Mmlu</th>\n",
|
107 |
+
" <th>Hellaswag</th>\n",
|
108 |
+
" <th>Arc</th>\n",
|
109 |
+
" </tr>\n",
|
110 |
+
" </thead>\n",
|
111 |
+
" <tbody>\n",
|
112 |
+
" <tr>\n",
|
113 |
+
" <th>0</th>\n",
|
114 |
+
" <td>NousResearch_Nous-Hermes-2-Mixtral-8x7B-DPO_main</td>\n",
|
115 |
+
" <td>2024-03-02</td>\n",
|
116 |
+
" <td>0.617</td>\n",
|
117 |
+
" <td>0.553</td>\n",
|
118 |
+
" <td>0.477</td>\n",
|
119 |
+
" <td>0.785</td>\n",
|
120 |
+
" <td>0.622</td>\n",
|
121 |
+
" <td>0.51</td>\n",
|
122 |
+
" <td>0.677</td>\n",
|
123 |
+
" <td>0.698</td>\n",
|
124 |
+
" </tr>\n",
|
125 |
+
" <tr>\n",
|
126 |
+
" <th>1</th>\n",
|
127 |
+
" <td>NousResearch_Nous-Hermes-2-Yi-34B_main</td>\n",
|
128 |
+
" <td>2024-03-04</td>\n",
|
129 |
+
" <td>0.604</td>\n",
|
130 |
+
" <td>NaN</td>\n",
|
131 |
+
" <td>0.439</td>\n",
|
132 |
+
" <td>0.806</td>\n",
|
133 |
+
" <td>NaN</td>\n",
|
134 |
+
" <td>0.48</td>\n",
|
135 |
+
" <td>0.640</td>\n",
|
136 |
+
" <td>0.654</td>\n",
|
137 |
+
" </tr>\n",
|
138 |
+
" <tr>\n",
|
139 |
+
" <th>2</th>\n",
|
140 |
+
" <td>mistralai_Mixtral-8x7B-Instruct-v0.1_main</td>\n",
|
141 |
+
" <td>2024-03-02</td>\n",
|
142 |
+
" <td>0.603</td>\n",
|
143 |
+
" <td>0.497</td>\n",
|
144 |
+
" <td>0.554</td>\n",
|
145 |
+
" <td>0.736</td>\n",
|
146 |
+
" <td>0.599</td>\n",
|
147 |
+
" <td>0.43</td>\n",
|
148 |
+
" <td>0.709</td>\n",
|
149 |
+
" <td>0.698</td>\n",
|
150 |
+
" </tr>\n",
|
151 |
+
" <tr>\n",
|
152 |
+
" <th>3</th>\n",
|
153 |
+
" <td>deepseek-ai_deepseek-llm-67b-chat_main</td>\n",
|
154 |
+
" <td>2024-03-04</td>\n",
|
155 |
+
" <td>0.603</td>\n",
|
156 |
+
" <td>NaN</td>\n",
|
157 |
+
" <td>0.395</td>\n",
|
158 |
+
" <td>0.792</td>\n",
|
159 |
+
" <td>NaN</td>\n",
|
160 |
+
" <td>NaN</td>\n",
|
161 |
+
" <td>NaN</td>\n",
|
162 |
+
" <td>0.622</td>\n",
|
163 |
+
" </tr>\n",
|
164 |
+
" <tr>\n",
|
165 |
+
" <th>4</th>\n",
|
166 |
+
" <td>deepseek-ai_deepseek-llm-67b-chat_main</td>\n",
|
167 |
+
" <td>2024-03-05</td>\n",
|
168 |
+
" <td>0.585</td>\n",
|
169 |
+
" <td>0.505</td>\n",
|
170 |
+
" <td>NaN</td>\n",
|
171 |
+
" <td>NaN</td>\n",
|
172 |
+
" <td>0.761</td>\n",
|
173 |
+
" <td>0.42</td>\n",
|
174 |
+
" <td>0.654</td>\n",
|
175 |
+
" <td>NaN</td>\n",
|
176 |
+
" </tr>\n",
|
177 |
+
" <tr>\n",
|
178 |
+
" <th>...</th>\n",
|
179 |
+
" <td>...</td>\n",
|
180 |
+
" <td>...</td>\n",
|
181 |
+
" <td>...</td>\n",
|
182 |
+
" <td>...</td>\n",
|
183 |
+
" <td>...</td>\n",
|
184 |
+
" <td>...</td>\n",
|
185 |
+
" <td>...</td>\n",
|
186 |
+
" <td>...</td>\n",
|
187 |
+
" <td>...</td>\n",
|
188 |
+
" <td>...</td>\n",
|
189 |
+
" </tr>\n",
|
190 |
+
" <tr>\n",
|
191 |
+
" <th>269</th>\n",
|
192 |
+
" <td>HuggingFaceH4_starcoder2-15b-ift_v18.0</td>\n",
|
193 |
+
" <td>2024-03-10</td>\n",
|
194 |
+
" <td>0.089</td>\n",
|
195 |
+
" <td>0.170</td>\n",
|
196 |
+
" <td>NaN</td>\n",
|
197 |
+
" <td>NaN</td>\n",
|
198 |
+
" <td>0.008</td>\n",
|
199 |
+
" <td>NaN</td>\n",
|
200 |
+
" <td>NaN</td>\n",
|
201 |
+
" <td>NaN</td>\n",
|
202 |
+
" </tr>\n",
|
203 |
+
" <tr>\n",
|
204 |
+
" <th>270</th>\n",
|
205 |
+
" <td>HuggingFaceH4_mistral-7b-ift_v49.0</td>\n",
|
206 |
+
" <td>2024-03-07</td>\n",
|
207 |
+
" <td>0.086</td>\n",
|
208 |
+
" <td>0.172</td>\n",
|
209 |
+
" <td>NaN</td>\n",
|
210 |
+
" <td>NaN</td>\n",
|
211 |
+
" <td>0.000</td>\n",
|
212 |
+
" <td>NaN</td>\n",
|
213 |
+
" <td>NaN</td>\n",
|
214 |
+
" <td>NaN</td>\n",
|
215 |
+
" </tr>\n",
|
216 |
+
" <tr>\n",
|
217 |
+
" <th>271</th>\n",
|
218 |
+
" <td>HuggingFaceH4_starchat-beta_main</td>\n",
|
219 |
+
" <td>2024-03-12</td>\n",
|
220 |
+
" <td>0.079</td>\n",
|
221 |
+
" <td>0.079</td>\n",
|
222 |
+
" <td>NaN</td>\n",
|
223 |
+
" <td>NaN</td>\n",
|
224 |
+
" <td>NaN</td>\n",
|
225 |
+
" <td>NaN</td>\n",
|
226 |
+
" <td>NaN</td>\n",
|
227 |
+
" <td>NaN</td>\n",
|
228 |
+
" </tr>\n",
|
229 |
+
" <tr>\n",
|
230 |
+
" <th>272</th>\n",
|
231 |
+
" <td>HuggingFaceH4_starcoder2-15b-ift_v7.0</td>\n",
|
232 |
+
" <td>2024-03-10</td>\n",
|
233 |
+
" <td>0.070</td>\n",
|
234 |
+
" <td>0.107</td>\n",
|
235 |
+
" <td>NaN</td>\n",
|
236 |
+
" <td>NaN</td>\n",
|
237 |
+
" <td>0.032</td>\n",
|
238 |
+
" <td>NaN</td>\n",
|
239 |
+
" <td>NaN</td>\n",
|
240 |
+
" <td>NaN</td>\n",
|
241 |
+
" </tr>\n",
|
242 |
+
" <tr>\n",
|
243 |
+
" <th>273</th>\n",
|
244 |
+
" <td>HuggingFaceH4_zephyr-7b-beta-ift_v1.1</td>\n",
|
245 |
+
" <td>2024-03-13</td>\n",
|
246 |
+
" <td>0.043</td>\n",
|
247 |
+
" <td>0.087</td>\n",
|
248 |
+
" <td>NaN</td>\n",
|
249 |
+
" <td>NaN</td>\n",
|
250 |
+
" <td>0.000</td>\n",
|
251 |
+
" <td>NaN</td>\n",
|
252 |
+
" <td>NaN</td>\n",
|
253 |
+
" <td>NaN</td>\n",
|
254 |
+
" </tr>\n",
|
255 |
+
" </tbody>\n",
|
256 |
+
"</table>\n",
|
257 |
+
"<p>274 rows × 10 columns</p>\n",
|
258 |
+
"</div>"
|
259 |
+
],
|
260 |
+
"text/plain": [
|
261 |
+
" Model Date Average \\\n",
|
262 |
+
"0 NousResearch_Nous-Hermes-2-Mixtral-8x7B-DPO_main 2024-03-02 0.617 \n",
|
263 |
+
"1 NousResearch_Nous-Hermes-2-Yi-34B_main 2024-03-04 0.604 \n",
|
264 |
+
"2 mistralai_Mixtral-8x7B-Instruct-v0.1_main 2024-03-02 0.603 \n",
|
265 |
+
"3 deepseek-ai_deepseek-llm-67b-chat_main 2024-03-04 0.603 \n",
|
266 |
+
"4 deepseek-ai_deepseek-llm-67b-chat_main 2024-03-05 0.585 \n",
|
267 |
+
".. ... ... ... \n",
|
268 |
+
"269 HuggingFaceH4_starcoder2-15b-ift_v18.0 2024-03-10 0.089 \n",
|
269 |
+
"270 HuggingFaceH4_mistral-7b-ift_v49.0 2024-03-07 0.086 \n",
|
270 |
+
"271 HuggingFaceH4_starchat-beta_main 2024-03-12 0.079 \n",
|
271 |
+
"272 HuggingFaceH4_starcoder2-15b-ift_v7.0 2024-03-10 0.070 \n",
|
272 |
+
"273 HuggingFaceH4_zephyr-7b-beta-ift_v1.1 2024-03-13 0.043 \n",
|
273 |
+
"\n",
|
274 |
+
" Ifeval Truthfulqa Winogrande Gsm8k Mmlu Hellaswag Arc \n",
|
275 |
+
"0 0.553 0.477 0.785 0.622 0.51 0.677 0.698 \n",
|
276 |
+
"1 NaN 0.439 0.806 NaN 0.48 0.640 0.654 \n",
|
277 |
+
"2 0.497 0.554 0.736 0.599 0.43 0.709 0.698 \n",
|
278 |
+
"3 NaN 0.395 0.792 NaN NaN NaN 0.622 \n",
|
279 |
+
"4 0.505 NaN NaN 0.761 0.42 0.654 NaN \n",
|
280 |
+
".. ... ... ... ... ... ... ... \n",
|
281 |
+
"269 0.170 NaN NaN 0.008 NaN NaN NaN \n",
|
282 |
+
"270 0.172 NaN NaN 0.000 NaN NaN NaN \n",
|
283 |
+
"271 0.079 NaN NaN NaN NaN NaN NaN \n",
|
284 |
+
"272 0.107 NaN NaN 0.032 NaN NaN NaN \n",
|
285 |
+
"273 0.087 NaN NaN 0.000 NaN NaN NaN \n",
|
286 |
+
"\n",
|
287 |
+
"[274 rows x 10 columns]"
|
288 |
+
]
|
289 |
+
},
|
290 |
+
"execution_count": 53,
|
291 |
+
"metadata": {},
|
292 |
+
"output_type": "execute_result"
|
293 |
+
}
|
294 |
+
],
|
295 |
+
"source": [
|
296 |
+
"df"
|
297 |
+
]
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"cell_type": "code",
|
301 |
+
"execution_count": 32,
|
302 |
+
"metadata": {},
|
303 |
+
"outputs": [
|
304 |
+
{
|
305 |
+
"data": {
|
306 |
+
"text/html": [
|
307 |
+
"<div>\n",
|
308 |
+
"<style scoped>\n",
|
309 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
310 |
+
" vertical-align: middle;\n",
|
311 |
+
" }\n",
|
312 |
+
"\n",
|
313 |
+
" .dataframe tbody tr th {\n",
|
314 |
+
" vertical-align: top;\n",
|
315 |
+
" }\n",
|
316 |
+
"\n",
|
317 |
+
" .dataframe thead th {\n",
|
318 |
+
" text-align: right;\n",
|
319 |
+
" }\n",
|
320 |
+
"</style>\n",
|
321 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
322 |
+
" <thead>\n",
|
323 |
+
" <tr style=\"text-align: right;\">\n",
|
324 |
+
" <th></th>\n",
|
325 |
+
" <th>Model</th>\n",
|
326 |
+
" <th>Average</th>\n",
|
327 |
+
" <th>Ifeval</th>\n",
|
328 |
+
" <th>Truthfulqa</th>\n",
|
329 |
+
" <th>Winogrande</th>\n",
|
330 |
+
" <th>Gsm8k</th>\n",
|
331 |
+
" <th>Mmlu</th>\n",
|
332 |
+
" <th>Hellaswag</th>\n",
|
333 |
+
" <th>Arc</th>\n",
|
334 |
+
" </tr>\n",
|
335 |
+
" </thead>\n",
|
336 |
+
" <tbody>\n",
|
337 |
+
" <tr>\n",
|
338 |
+
" <th>50</th>\n",
|
339 |
+
" <td>HuggingFaceH4_mistral-7b-ift_v48.56_2024-03-08</td>\n",
|
340 |
+
" <td>0.49</td>\n",
|
341 |
+
" <td>0.418</td>\n",
|
342 |
+
" <td>0.359</td>\n",
|
343 |
+
" <td>0.672</td>\n",
|
344 |
+
" <td>0.453</td>\n",
|
345 |
+
" <td>0.33</td>\n",
|
346 |
+
" <td>0.656</td>\n",
|
347 |
+
" <td>0.545</td>\n",
|
348 |
+
" </tr>\n",
|
349 |
+
" <tr>\n",
|
350 |
+
" <th>532</th>\n",
|
351 |
+
" <td>HuggingFaceH4_mistral-7b-ift_v48.56</td>\n",
|
352 |
+
" <td>NaN</td>\n",
|
353 |
+
" <td>NaN</td>\n",
|
354 |
+
" <td>NaN</td>\n",
|
355 |
+
" <td>NaN</td>\n",
|
356 |
+
" <td>NaN</td>\n",
|
357 |
+
" <td>NaN</td>\n",
|
358 |
+
" <td>NaN</td>\n",
|
359 |
+
" <td>NaN</td>\n",
|
360 |
+
" </tr>\n",
|
361 |
+
" </tbody>\n",
|
362 |
+
"</table>\n",
|
363 |
+
"</div>"
|
364 |
+
],
|
365 |
+
"text/plain": [
|
366 |
+
" Model Average Ifeval \\\n",
|
367 |
+
"50 HuggingFaceH4_mistral-7b-ift_v48.56_2024-03-08 0.49 0.418 \n",
|
368 |
+
"532 HuggingFaceH4_mistral-7b-ift_v48.56 NaN NaN \n",
|
369 |
+
"\n",
|
370 |
+
" Truthfulqa Winogrande Gsm8k Mmlu Hellaswag Arc \n",
|
371 |
+
"50 0.359 0.672 0.453 0.33 0.656 0.545 \n",
|
372 |
+
"532 NaN NaN NaN NaN NaN NaN "
|
373 |
+
]
|
374 |
+
},
|
375 |
+
"execution_count": 32,
|
376 |
+
"metadata": {},
|
377 |
+
"output_type": "execute_result"
|
378 |
+
}
|
379 |
+
],
|
380 |
+
"source": [
|
381 |
+
"df[df['Model'].str.contains(\"HuggingFaceH4_mistral-7b-ift_v48.56\")]"
|
382 |
+
]
|
383 |
+
},
|
384 |
+
{
|
385 |
+
"cell_type": "code",
|
386 |
+
"execution_count": null,
|
387 |
+
"metadata": {},
|
388 |
+
"outputs": [],
|
389 |
+
"source": []
|
390 |
+
}
|
391 |
+
],
|
392 |
+
"metadata": {
|
393 |
+
"kernelspec": {
|
394 |
+
"display_name": "hf",
|
395 |
+
"language": "python",
|
396 |
+
"name": "python3"
|
397 |
+
},
|
398 |
+
"language_info": {
|
399 |
+
"codemirror_mode": {
|
400 |
+
"name": "ipython",
|
401 |
+
"version": 3
|
402 |
+
},
|
403 |
+
"file_extension": ".py",
|
404 |
+
"mimetype": "text/x-python",
|
405 |
+
"name": "python",
|
406 |
+
"nbconvert_exporter": "python",
|
407 |
+
"pygments_lexer": "ipython3",
|
408 |
+
"version": "3.10.6"
|
409 |
+
}
|
410 |
+
},
|
411 |
+
"nbformat": 4,
|
412 |
+
"nbformat_minor": 2
|
413 |
+
}
|