Upload eval_results/Qwen/Qwen1.5-0.5B-Chat/main/eval_ifeval.json with huggingface_hub
Browse files
eval_results/Qwen/Qwen1.5-0.5B-Chat/main/eval_ifeval.json
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"ifeval": {
|
4 |
+
"prompt_level_strict_acc,none": 0.0036968576709796672,
|
5 |
+
"prompt_level_strict_acc_stderr,none": 0.0026116515685375786,
|
6 |
+
"inst_level_strict_acc,none": 0.004796163069544364,
|
7 |
+
"inst_level_strict_acc_stderr,none": "N/A",
|
8 |
+
"prompt_level_loose_acc,none": 0.0036968576709796672,
|
9 |
+
"prompt_level_loose_acc_stderr,none": 0.0026116515685375786,
|
10 |
+
"inst_level_loose_acc,none": 0.005995203836930456,
|
11 |
+
"inst_level_loose_acc_stderr,none": "N/A",
|
12 |
+
"alias": "ifeval"
|
13 |
+
}
|
14 |
+
},
|
15 |
+
"configs": {
|
16 |
+
"ifeval": {
|
17 |
+
"task": "ifeval",
|
18 |
+
"dataset_path": "wis-k/instruction-following-eval",
|
19 |
+
"test_split": "train",
|
20 |
+
"doc_to_text": "prompt",
|
21 |
+
"doc_to_target": 0,
|
22 |
+
"process_results": "def process_results(doc, results):\n eval_logger.warning(\n \"This task is meant for chat-finetuned models, and may not give meaningful results for models other than `openai` or `anthropic` if `doc_to_text` in its YAML is not wrapped in the appropriate chat template string. This warning will be removed when chat templating support is added natively to local models\"\n )\n\n inp = InputExample(\n key=doc[\"key\"],\n instruction_id_list=doc[\"instruction_id_list\"],\n prompt=doc[\"prompt\"],\n kwargs=doc[\"kwargs\"],\n )\n response = results[0]\n\n out_strict = test_instruction_following_strict(inp, response)\n out_loose = test_instruction_following_loose(inp, response)\n\n return {\n \"prompt_level_strict_acc\": out_strict.follow_all_instructions,\n \"inst_level_strict_acc\": out_strict.follow_instruction_list,\n \"prompt_level_loose_acc\": out_loose.follow_all_instructions,\n \"inst_level_loose_acc\": out_loose.follow_instruction_list,\n }\n",
|
23 |
+
"description": "",
|
24 |
+
"target_delimiter": " ",
|
25 |
+
"fewshot_delimiter": "\n\n",
|
26 |
+
"num_fewshot": 0,
|
27 |
+
"metric_list": [
|
28 |
+
{
|
29 |
+
"metric": "prompt_level_strict_acc",
|
30 |
+
"aggregation": "mean",
|
31 |
+
"higher_is_better": true
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"metric": "inst_level_strict_acc",
|
35 |
+
"aggregation": "def agg_inst_level_acc(items):\n flat_items = [item for sublist in items for item in sublist]\n inst_level_acc = sum(flat_items) / len(flat_items)\n return inst_level_acc\n",
|
36 |
+
"higher_is_better": true
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"metric": "prompt_level_loose_acc",
|
40 |
+
"aggregation": "mean",
|
41 |
+
"higher_is_better": true
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"metric": "inst_level_loose_acc",
|
45 |
+
"aggregation": "def agg_inst_level_acc(items):\n flat_items = [item for sublist in items for item in sublist]\n inst_level_acc = sum(flat_items) / len(flat_items)\n return inst_level_acc\n",
|
46 |
+
"higher_is_better": true
|
47 |
+
}
|
48 |
+
],
|
49 |
+
"output_type": "generate_until",
|
50 |
+
"generation_kwargs": {
|
51 |
+
"until": [],
|
52 |
+
"do_sample": false,
|
53 |
+
"temperature": 0.0,
|
54 |
+
"max_gen_toks": 1280
|
55 |
+
},
|
56 |
+
"repeats": 1,
|
57 |
+
"should_decontaminate": false,
|
58 |
+
"metadata": {
|
59 |
+
"version": 2.0
|
60 |
+
}
|
61 |
+
}
|
62 |
+
},
|
63 |
+
"versions": {
|
64 |
+
"ifeval": 2.0
|
65 |
+
},
|
66 |
+
"n-shot": {
|
67 |
+
"ifeval": 0
|
68 |
+
},
|
69 |
+
"config": {
|
70 |
+
"model": "hf",
|
71 |
+
"model_args": "pretrained=Qwen/Qwen1.5-0.5B-Chat,revision=main,dtype=bfloat16",
|
72 |
+
"batch_size": "auto",
|
73 |
+
"batch_sizes": [],
|
74 |
+
"device": null,
|
75 |
+
"use_cache": null,
|
76 |
+
"limit": null,
|
77 |
+
"bootstrap_iters": 100000,
|
78 |
+
"gen_kwargs": null
|
79 |
+
},
|
80 |
+
"git_hash": "2d2e67f"
|
81 |
+
}
|