Add math levels
Browse files
app.py
CHANGED
@@ -57,14 +57,23 @@ def get_leaderboard_df(merge_values: bool = True):
|
|
57 |
elif task.lower() == "agieval":
|
58 |
value = data["results"]["all"]["acc_norm"]
|
59 |
# MATH reports qem
|
60 |
-
elif task.lower() in ["math", "
|
61 |
value = data["results"]["all"]["qem"]
|
62 |
else:
|
63 |
first_metric_key = next(
|
64 |
iter(data["results"][first_result_key])
|
65 |
) # gets the first key in the first result
|
66 |
value = data["results"][first_result_key][first_metric_key] # gets the value of the first metric
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
# Put IFEval / BBH / AGIEval in first columns
|
70 |
ifeval_col = df.pop("Ifeval")
|
|
|
57 |
elif task.lower() == "agieval":
|
58 |
value = data["results"]["all"]["acc_norm"]
|
59 |
# MATH reports qem
|
60 |
+
elif task.lower() in ["math", "aimo_kaggle"]:
|
61 |
value = data["results"]["all"]["qem"]
|
62 |
else:
|
63 |
first_metric_key = next(
|
64 |
iter(data["results"][first_result_key])
|
65 |
) # gets the first key in the first result
|
66 |
value = data["results"][first_result_key][first_metric_key] # gets the value of the first metric
|
67 |
+
|
68 |
+
# For mini_math we report 5 metrics, one for each level and store each one as a separate row in the dataframe
|
69 |
+
if task.lower() == "mini_math":
|
70 |
+
for k, v in data["results"].items():
|
71 |
+
if k != "all":
|
72 |
+
level = k.split("|")[1].split(":")[-1]
|
73 |
+
value = v["qem"]
|
74 |
+
df.loc[model_revision, f"{task}_{level}"] = value
|
75 |
+
else:
|
76 |
+
df.loc[model_revision, task] = value
|
77 |
|
78 |
# Put IFEval / BBH / AGIEval in first columns
|
79 |
ifeval_col = df.pop("Ifeval")
|