open-r1-eval-leaderboard
/
eval_results
/HuggingFaceH4
/zephyr-7b-beta-dpo
/v0.2
/mmlu
/results_2024-03-02T19-28-05.022666.json
{ | |
"config_general": { | |
"lighteval_sha": "?", | |
"num_fewshot_seeds": 1, | |
"override_batch_size": 1, | |
"max_samples": null, | |
"job_id": "", | |
"start_time": 1059470.486111399, | |
"end_time": 1060328.33141135, | |
"total_evaluation_time_secondes": "857.8452999510337", | |
"model_name": "HuggingFaceH4/zephyr-7b-beta-dpo", | |
"model_sha": "43385469db5293505cceda2de19aef5fde21fca7", | |
"model_dtype": "torch.bfloat16", | |
"model_size": "13.99 GB", | |
"config": null | |
}, | |
"results": { | |
"lighteval|mmlu:abstract_algebra|5": { | |
"acc": 0.28, | |
"acc_stderr": 0.04512608598542128 | |
}, | |
"lighteval|mmlu:anatomy|5": { | |
"acc": 0.5925925925925926, | |
"acc_stderr": 0.04244633238353228 | |
}, | |
"lighteval|mmlu:astronomy|5": { | |
"acc": 0.5855263157894737, | |
"acc_stderr": 0.04008973785779206 | |
}, | |
"lighteval|mmlu:business_ethics|5": { | |
"acc": 0.53, | |
"acc_stderr": 0.05016135580465919 | |
}, | |
"lighteval|mmlu:clinical_knowledge|5": { | |
"acc": 0.6679245283018868, | |
"acc_stderr": 0.02898545565233439 | |
}, | |
"lighteval|mmlu:college_biology|5": { | |
"acc": 0.6597222222222222, | |
"acc_stderr": 0.039621355734862175 | |
}, | |
"lighteval|mmlu:college_chemistry|5": { | |
"acc": 0.4, | |
"acc_stderr": 0.04923659639173309 | |
}, | |
"lighteval|mmlu:college_computer_science|5": { | |
"acc": 0.5, | |
"acc_stderr": 0.050251890762960605 | |
}, | |
"lighteval|mmlu:college_mathematics|5": { | |
"acc": 0.35, | |
"acc_stderr": 0.0479372485441102 | |
}, | |
"lighteval|mmlu:college_medicine|5": { | |
"acc": 0.6358381502890174, | |
"acc_stderr": 0.03669072477416906 | |
}, | |
"lighteval|mmlu:college_physics|5": { | |
"acc": 0.38235294117647056, | |
"acc_stderr": 0.04835503696107223 | |
}, | |
"lighteval|mmlu:computer_security|5": { | |
"acc": 0.74, | |
"acc_stderr": 0.0440844002276808 | |
}, | |
"lighteval|mmlu:conceptual_physics|5": { | |
"acc": 0.502127659574468, | |
"acc_stderr": 0.03268572658667492 | |
}, | |
"lighteval|mmlu:econometrics|5": { | |
"acc": 0.3684210526315789, | |
"acc_stderr": 0.04537815354939391 | |
}, | |
"lighteval|mmlu:electrical_engineering|5": { | |
"acc": 0.5172413793103449, | |
"acc_stderr": 0.04164188720169375 | |
}, | |
"lighteval|mmlu:elementary_mathematics|5": { | |
"acc": 0.3941798941798942, | |
"acc_stderr": 0.02516798233389414 | |
}, | |
"lighteval|mmlu:formal_logic|5": { | |
"acc": 0.40476190476190477, | |
"acc_stderr": 0.04390259265377563 | |
}, | |
"lighteval|mmlu:global_facts|5": { | |
"acc": 0.36, | |
"acc_stderr": 0.04824181513244218 | |
}, | |
"lighteval|mmlu:high_school_biology|5": { | |
"acc": 0.7129032258064516, | |
"acc_stderr": 0.025736542745594528 | |
}, | |
"lighteval|mmlu:high_school_chemistry|5": { | |
"acc": 0.47783251231527096, | |
"acc_stderr": 0.035145285621750066 | |
}, | |
"lighteval|mmlu:high_school_computer_science|5": { | |
"acc": 0.59, | |
"acc_stderr": 0.04943110704237102 | |
}, | |
"lighteval|mmlu:high_school_european_history|5": { | |
"acc": 0.7636363636363637, | |
"acc_stderr": 0.03317505930009181 | |
}, | |
"lighteval|mmlu:high_school_geography|5": { | |
"acc": 0.7676767676767676, | |
"acc_stderr": 0.030088629490217487 | |
}, | |
"lighteval|mmlu:high_school_government_and_politics|5": { | |
"acc": 0.7772020725388601, | |
"acc_stderr": 0.03003114797764154 | |
}, | |
"lighteval|mmlu:high_school_macroeconomics|5": { | |
"acc": 0.5666666666666667, | |
"acc_stderr": 0.025124653525885117 | |
}, | |
"lighteval|mmlu:high_school_mathematics|5": { | |
"acc": 0.3, | |
"acc_stderr": 0.027940457136228412 | |
}, | |
"lighteval|mmlu:high_school_microeconomics|5": { | |
"acc": 0.634453781512605, | |
"acc_stderr": 0.031282177063684614 | |
}, | |
"lighteval|mmlu:high_school_physics|5": { | |
"acc": 0.33774834437086093, | |
"acc_stderr": 0.038615575462551684 | |
}, | |
"lighteval|mmlu:high_school_psychology|5": { | |
"acc": 0.7908256880733945, | |
"acc_stderr": 0.017437937173343233 | |
}, | |
"lighteval|mmlu:high_school_statistics|5": { | |
"acc": 0.48148148148148145, | |
"acc_stderr": 0.03407632093854052 | |
}, | |
"lighteval|mmlu:high_school_us_history|5": { | |
"acc": 0.7843137254901961, | |
"acc_stderr": 0.028867431449849316 | |
}, | |
"lighteval|mmlu:high_school_world_history|5": { | |
"acc": 0.759493670886076, | |
"acc_stderr": 0.027820781981149685 | |
}, | |
"lighteval|mmlu:human_aging|5": { | |
"acc": 0.6636771300448431, | |
"acc_stderr": 0.031708824268455 | |
}, | |
"lighteval|mmlu:human_sexuality|5": { | |
"acc": 0.6946564885496184, | |
"acc_stderr": 0.04039314978724561 | |
}, | |
"lighteval|mmlu:international_law|5": { | |
"acc": 0.7272727272727273, | |
"acc_stderr": 0.04065578140908705 | |
}, | |
"lighteval|mmlu:jurisprudence|5": { | |
"acc": 0.7314814814814815, | |
"acc_stderr": 0.042844679680521934 | |
}, | |
"lighteval|mmlu:logical_fallacies|5": { | |
"acc": 0.6319018404907976, | |
"acc_stderr": 0.03789213935838396 | |
}, | |
"lighteval|mmlu:machine_learning|5": { | |
"acc": 0.42857142857142855, | |
"acc_stderr": 0.04697113923010212 | |
}, | |
"lighteval|mmlu:management|5": { | |
"acc": 0.7087378640776699, | |
"acc_stderr": 0.044986763205729224 | |
}, | |
"lighteval|mmlu:marketing|5": { | |
"acc": 0.8376068376068376, | |
"acc_stderr": 0.024161618127987745 | |
}, | |
"lighteval|mmlu:medical_genetics|5": { | |
"acc": 0.68, | |
"acc_stderr": 0.046882617226215034 | |
}, | |
"lighteval|mmlu:miscellaneous|5": { | |
"acc": 0.7739463601532567, | |
"acc_stderr": 0.014957458504335835 | |
}, | |
"lighteval|mmlu:moral_disputes|5": { | |
"acc": 0.6734104046242775, | |
"acc_stderr": 0.025248264774242826 | |
}, | |
"lighteval|mmlu:moral_scenarios|5": { | |
"acc": 0.3754189944134078, | |
"acc_stderr": 0.01619510424846353 | |
}, | |
"lighteval|mmlu:nutrition|5": { | |
"acc": 0.6405228758169934, | |
"acc_stderr": 0.027475969910660952 | |
}, | |
"lighteval|mmlu:philosophy|5": { | |
"acc": 0.6816720257234726, | |
"acc_stderr": 0.026457225067811025 | |
}, | |
"lighteval|mmlu:prehistory|5": { | |
"acc": 0.6635802469135802, | |
"acc_stderr": 0.026289734945952926 | |
}, | |
"lighteval|mmlu:professional_accounting|5": { | |
"acc": 0.4432624113475177, | |
"acc_stderr": 0.029634838473766006 | |
}, | |
"lighteval|mmlu:professional_law|5": { | |
"acc": 0.4152542372881356, | |
"acc_stderr": 0.01258547179340066 | |
}, | |
"lighteval|mmlu:professional_medicine|5": { | |
"acc": 0.5845588235294118, | |
"acc_stderr": 0.029935342707877753 | |
}, | |
"lighteval|mmlu:professional_psychology|5": { | |
"acc": 0.5898692810457516, | |
"acc_stderr": 0.019898412717635903 | |
}, | |
"lighteval|mmlu:public_relations|5": { | |
"acc": 0.6, | |
"acc_stderr": 0.0469237132203465 | |
}, | |
"lighteval|mmlu:security_studies|5": { | |
"acc": 0.6408163265306123, | |
"acc_stderr": 0.030713560455108493 | |
}, | |
"lighteval|mmlu:sociology|5": { | |
"acc": 0.7860696517412935, | |
"acc_stderr": 0.028996909693328927 | |
}, | |
"lighteval|mmlu:us_foreign_policy|5": { | |
"acc": 0.82, | |
"acc_stderr": 0.03861229196653693 | |
}, | |
"lighteval|mmlu:virology|5": { | |
"acc": 0.5180722891566265, | |
"acc_stderr": 0.03889951252827216 | |
}, | |
"lighteval|mmlu:world_religions|5": { | |
"acc": 0.8187134502923976, | |
"acc_stderr": 0.029547741687640038 | |
}, | |
"lighteval|mmlu:_average|5": { | |
"acc": 0.5919999318939821, | |
"acc_stderr": 0.03497624123572297 | |
} | |
}, | |
"versions": { | |
"lighteval|mmlu:abstract_algebra|5": 0, | |
"lighteval|mmlu:anatomy|5": 0, | |
"lighteval|mmlu:astronomy|5": 0, | |
"lighteval|mmlu:business_ethics|5": 0, | |
"lighteval|mmlu:clinical_knowledge|5": 0, | |
"lighteval|mmlu:college_biology|5": 0, | |
"lighteval|mmlu:college_chemistry|5": 0, | |
"lighteval|mmlu:college_computer_science|5": 0, | |
"lighteval|mmlu:college_mathematics|5": 0, | |
"lighteval|mmlu:college_medicine|5": 0, | |
"lighteval|mmlu:college_physics|5": 0, | |
"lighteval|mmlu:computer_security|5": 0, | |
"lighteval|mmlu:conceptual_physics|5": 0, | |
"lighteval|mmlu:econometrics|5": 0, | |
"lighteval|mmlu:electrical_engineering|5": 0, | |
"lighteval|mmlu:elementary_mathematics|5": 0, | |
"lighteval|mmlu:formal_logic|5": 0, | |
"lighteval|mmlu:global_facts|5": 0, | |
"lighteval|mmlu:high_school_biology|5": 0, | |
"lighteval|mmlu:high_school_chemistry|5": 0, | |
"lighteval|mmlu:high_school_computer_science|5": 0, | |
"lighteval|mmlu:high_school_european_history|5": 0, | |
"lighteval|mmlu:high_school_geography|5": 0, | |
"lighteval|mmlu:high_school_government_and_politics|5": 0, | |
"lighteval|mmlu:high_school_macroeconomics|5": 0, | |
"lighteval|mmlu:high_school_mathematics|5": 0, | |
"lighteval|mmlu:high_school_microeconomics|5": 0, | |
"lighteval|mmlu:high_school_physics|5": 0, | |
"lighteval|mmlu:high_school_psychology|5": 0, | |
"lighteval|mmlu:high_school_statistics|5": 0, | |
"lighteval|mmlu:high_school_us_history|5": 0, | |
"lighteval|mmlu:high_school_world_history|5": 0, | |
"lighteval|mmlu:human_aging|5": 0, | |
"lighteval|mmlu:human_sexuality|5": 0, | |
"lighteval|mmlu:international_law|5": 0, | |
"lighteval|mmlu:jurisprudence|5": 0, | |
"lighteval|mmlu:logical_fallacies|5": 0, | |
"lighteval|mmlu:machine_learning|5": 0, | |
"lighteval|mmlu:management|5": 0, | |
"lighteval|mmlu:marketing|5": 0, | |
"lighteval|mmlu:medical_genetics|5": 0, | |
"lighteval|mmlu:miscellaneous|5": 0, | |
"lighteval|mmlu:moral_disputes|5": 0, | |
"lighteval|mmlu:moral_scenarios|5": 0, | |
"lighteval|mmlu:nutrition|5": 0, | |
"lighteval|mmlu:philosophy|5": 0, | |
"lighteval|mmlu:prehistory|5": 0, | |
"lighteval|mmlu:professional_accounting|5": 0, | |
"lighteval|mmlu:professional_law|5": 0, | |
"lighteval|mmlu:professional_medicine|5": 0, | |
"lighteval|mmlu:professional_psychology|5": 0, | |
"lighteval|mmlu:public_relations|5": 0, | |
"lighteval|mmlu:security_studies|5": 0, | |
"lighteval|mmlu:sociology|5": 0, | |
"lighteval|mmlu:us_foreign_policy|5": 0, | |
"lighteval|mmlu:virology|5": 0, | |
"lighteval|mmlu:world_religions|5": 0 | |
}, | |
"config_tasks": { | |
"lighteval|mmlu:abstract_algebra": { | |
"name": "mmlu:abstract_algebra", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "abstract_algebra", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 100, | |
"effective_num_docs": 100 | |
}, | |
"lighteval|mmlu:anatomy": { | |
"name": "mmlu:anatomy", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "anatomy", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 135, | |
"effective_num_docs": 135 | |
}, | |
"lighteval|mmlu:astronomy": { | |
"name": "mmlu:astronomy", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "astronomy", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 152, | |
"effective_num_docs": 152 | |
}, | |
"lighteval|mmlu:business_ethics": { | |
"name": "mmlu:business_ethics", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "business_ethics", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 100, | |
"effective_num_docs": 100 | |
}, | |
"lighteval|mmlu:clinical_knowledge": { | |
"name": "mmlu:clinical_knowledge", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "clinical_knowledge", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 265, | |
"effective_num_docs": 265 | |
}, | |
"lighteval|mmlu:college_biology": { | |
"name": "mmlu:college_biology", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "college_biology", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 144, | |
"effective_num_docs": 144 | |
}, | |
"lighteval|mmlu:college_chemistry": { | |
"name": "mmlu:college_chemistry", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "college_chemistry", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 100, | |
"effective_num_docs": 100 | |
}, | |
"lighteval|mmlu:college_computer_science": { | |
"name": "mmlu:college_computer_science", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "college_computer_science", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 100, | |
"effective_num_docs": 100 | |
}, | |
"lighteval|mmlu:college_mathematics": { | |
"name": "mmlu:college_mathematics", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "college_mathematics", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 100, | |
"effective_num_docs": 100 | |
}, | |
"lighteval|mmlu:college_medicine": { | |
"name": "mmlu:college_medicine", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "college_medicine", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 173, | |
"effective_num_docs": 173 | |
}, | |
"lighteval|mmlu:college_physics": { | |
"name": "mmlu:college_physics", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "college_physics", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 102, | |
"effective_num_docs": 102 | |
}, | |
"lighteval|mmlu:computer_security": { | |
"name": "mmlu:computer_security", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "computer_security", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 100, | |
"effective_num_docs": 100 | |
}, | |
"lighteval|mmlu:conceptual_physics": { | |
"name": "mmlu:conceptual_physics", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "conceptual_physics", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 235, | |
"effective_num_docs": 235 | |
}, | |
"lighteval|mmlu:econometrics": { | |
"name": "mmlu:econometrics", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "econometrics", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 114, | |
"effective_num_docs": 114 | |
}, | |
"lighteval|mmlu:electrical_engineering": { | |
"name": "mmlu:electrical_engineering", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "electrical_engineering", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 145, | |
"effective_num_docs": 145 | |
}, | |
"lighteval|mmlu:elementary_mathematics": { | |
"name": "mmlu:elementary_mathematics", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "elementary_mathematics", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 378, | |
"effective_num_docs": 378 | |
}, | |
"lighteval|mmlu:formal_logic": { | |
"name": "mmlu:formal_logic", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "formal_logic", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 126, | |
"effective_num_docs": 126 | |
}, | |
"lighteval|mmlu:global_facts": { | |
"name": "mmlu:global_facts", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "global_facts", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 100, | |
"effective_num_docs": 100 | |
}, | |
"lighteval|mmlu:high_school_biology": { | |
"name": "mmlu:high_school_biology", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "high_school_biology", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 310, | |
"effective_num_docs": 310 | |
}, | |
"lighteval|mmlu:high_school_chemistry": { | |
"name": "mmlu:high_school_chemistry", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "high_school_chemistry", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 203, | |
"effective_num_docs": 203 | |
}, | |
"lighteval|mmlu:high_school_computer_science": { | |
"name": "mmlu:high_school_computer_science", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "high_school_computer_science", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 100, | |
"effective_num_docs": 100 | |
}, | |
"lighteval|mmlu:high_school_european_history": { | |
"name": "mmlu:high_school_european_history", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "high_school_european_history", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 165, | |
"effective_num_docs": 165 | |
}, | |
"lighteval|mmlu:high_school_geography": { | |
"name": "mmlu:high_school_geography", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "high_school_geography", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 198, | |
"effective_num_docs": 198 | |
}, | |
"lighteval|mmlu:high_school_government_and_politics": { | |
"name": "mmlu:high_school_government_and_politics", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "high_school_government_and_politics", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 193, | |
"effective_num_docs": 193 | |
}, | |
"lighteval|mmlu:high_school_macroeconomics": { | |
"name": "mmlu:high_school_macroeconomics", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "high_school_macroeconomics", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 390, | |
"effective_num_docs": 390 | |
}, | |
"lighteval|mmlu:high_school_mathematics": { | |
"name": "mmlu:high_school_mathematics", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "high_school_mathematics", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 270, | |
"effective_num_docs": 270 | |
}, | |
"lighteval|mmlu:high_school_microeconomics": { | |
"name": "mmlu:high_school_microeconomics", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "high_school_microeconomics", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 238, | |
"effective_num_docs": 238 | |
}, | |
"lighteval|mmlu:high_school_physics": { | |
"name": "mmlu:high_school_physics", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "high_school_physics", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 151, | |
"effective_num_docs": 151 | |
}, | |
"lighteval|mmlu:high_school_psychology": { | |
"name": "mmlu:high_school_psychology", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "high_school_psychology", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 545, | |
"effective_num_docs": 545 | |
}, | |
"lighteval|mmlu:high_school_statistics": { | |
"name": "mmlu:high_school_statistics", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "high_school_statistics", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 216, | |
"effective_num_docs": 216 | |
}, | |
"lighteval|mmlu:high_school_us_history": { | |
"name": "mmlu:high_school_us_history", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "high_school_us_history", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 204, | |
"effective_num_docs": 204 | |
}, | |
"lighteval|mmlu:high_school_world_history": { | |
"name": "mmlu:high_school_world_history", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "high_school_world_history", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 237, | |
"effective_num_docs": 237 | |
}, | |
"lighteval|mmlu:human_aging": { | |
"name": "mmlu:human_aging", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "human_aging", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 223, | |
"effective_num_docs": 223 | |
}, | |
"lighteval|mmlu:human_sexuality": { | |
"name": "mmlu:human_sexuality", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "human_sexuality", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 131, | |
"effective_num_docs": 131 | |
}, | |
"lighteval|mmlu:international_law": { | |
"name": "mmlu:international_law", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "international_law", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 121, | |
"effective_num_docs": 121 | |
}, | |
"lighteval|mmlu:jurisprudence": { | |
"name": "mmlu:jurisprudence", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "jurisprudence", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 108, | |
"effective_num_docs": 108 | |
}, | |
"lighteval|mmlu:logical_fallacies": { | |
"name": "mmlu:logical_fallacies", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "logical_fallacies", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 163, | |
"effective_num_docs": 163 | |
}, | |
"lighteval|mmlu:machine_learning": { | |
"name": "mmlu:machine_learning", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "machine_learning", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 112, | |
"effective_num_docs": 112 | |
}, | |
"lighteval|mmlu:management": { | |
"name": "mmlu:management", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "management", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 103, | |
"effective_num_docs": 103 | |
}, | |
"lighteval|mmlu:marketing": { | |
"name": "mmlu:marketing", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "marketing", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 234, | |
"effective_num_docs": 234 | |
}, | |
"lighteval|mmlu:medical_genetics": { | |
"name": "mmlu:medical_genetics", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "medical_genetics", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 100, | |
"effective_num_docs": 100 | |
}, | |
"lighteval|mmlu:miscellaneous": { | |
"name": "mmlu:miscellaneous", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "miscellaneous", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 783, | |
"effective_num_docs": 783 | |
}, | |
"lighteval|mmlu:moral_disputes": { | |
"name": "mmlu:moral_disputes", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "moral_disputes", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 346, | |
"effective_num_docs": 346 | |
}, | |
"lighteval|mmlu:moral_scenarios": { | |
"name": "mmlu:moral_scenarios", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "moral_scenarios", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 895, | |
"effective_num_docs": 895 | |
}, | |
"lighteval|mmlu:nutrition": { | |
"name": "mmlu:nutrition", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "nutrition", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 306, | |
"effective_num_docs": 306 | |
}, | |
"lighteval|mmlu:philosophy": { | |
"name": "mmlu:philosophy", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "philosophy", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 311, | |
"effective_num_docs": 311 | |
}, | |
"lighteval|mmlu:prehistory": { | |
"name": "mmlu:prehistory", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "prehistory", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 324, | |
"effective_num_docs": 324 | |
}, | |
"lighteval|mmlu:professional_accounting": { | |
"name": "mmlu:professional_accounting", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "professional_accounting", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 282, | |
"effective_num_docs": 282 | |
}, | |
"lighteval|mmlu:professional_law": { | |
"name": "mmlu:professional_law", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "professional_law", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 1534, | |
"effective_num_docs": 1534 | |
}, | |
"lighteval|mmlu:professional_medicine": { | |
"name": "mmlu:professional_medicine", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "professional_medicine", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 272, | |
"effective_num_docs": 272 | |
}, | |
"lighteval|mmlu:professional_psychology": { | |
"name": "mmlu:professional_psychology", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "professional_psychology", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 612, | |
"effective_num_docs": 612 | |
}, | |
"lighteval|mmlu:public_relations": { | |
"name": "mmlu:public_relations", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "public_relations", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 110, | |
"effective_num_docs": 110 | |
}, | |
"lighteval|mmlu:security_studies": { | |
"name": "mmlu:security_studies", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "security_studies", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 245, | |
"effective_num_docs": 245 | |
}, | |
"lighteval|mmlu:sociology": { | |
"name": "mmlu:sociology", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "sociology", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 201, | |
"effective_num_docs": 201 | |
}, | |
"lighteval|mmlu:us_foreign_policy": { | |
"name": "mmlu:us_foreign_policy", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "us_foreign_policy", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 100, | |
"effective_num_docs": 100 | |
}, | |
"lighteval|mmlu:virology": { | |
"name": "mmlu:virology", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "virology", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 166, | |
"effective_num_docs": 166 | |
}, | |
"lighteval|mmlu:world_religions": { | |
"name": "mmlu:world_religions", | |
"prompt_function": "mmlu_harness", | |
"hf_repo": "lighteval/mmlu", | |
"hf_subset": "world_religions", | |
"metric": [ | |
"loglikelihood_acc" | |
], | |
"hf_avail_splits": [ | |
"auxiliary_train", | |
"test", | |
"validation", | |
"dev" | |
], | |
"evaluation_splits": [ | |
"test" | |
], | |
"few_shots_split": "dev", | |
"few_shots_select": "sequential", | |
"generation_size": 1, | |
"stop_sequence": [ | |
"\n" | |
], | |
"output_regex": null, | |
"frozen": false, | |
"suite": [ | |
"lighteval", | |
"mmlu" | |
], | |
"original_num_docs": 171, | |
"effective_num_docs": 171 | |
} | |
}, | |
"summary_tasks": { | |
"lighteval|mmlu:abstract_algebra|5": { | |
"hashes": { | |
"hash_examples": "4c76229e00c9c0e9", | |
"hash_full_prompts": "c3130662e7cc91d3", | |
"hash_input_tokens": "b617a339eb3b3eb7", | |
"hash_cont_tokens": "9e1c9ca2c51de57e" | |
}, | |
"truncated": 0, | |
"non_truncated": 100, | |
"padded": 400, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:anatomy|5": { | |
"hashes": { | |
"hash_examples": "6a1f8104dccbd33b", | |
"hash_full_prompts": "05a97165c871964d", | |
"hash_input_tokens": "14e9962d3b1706ea", | |
"hash_cont_tokens": "025910e68cf29c3d" | |
}, | |
"truncated": 0, | |
"non_truncated": 135, | |
"padded": 540, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:astronomy|5": { | |
"hashes": { | |
"hash_examples": "1302effa3a76ce4c", | |
"hash_full_prompts": "68355efd63c4de09", | |
"hash_input_tokens": "44bd837a633de965", | |
"hash_cont_tokens": "1a66fd04f03e0517" | |
}, | |
"truncated": 0, | |
"non_truncated": 152, | |
"padded": 608, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:business_ethics|5": { | |
"hashes": { | |
"hash_examples": "03cb8bce5336419a", | |
"hash_full_prompts": "8f440e0924442390", | |
"hash_input_tokens": "16217026443317e4", | |
"hash_cont_tokens": "9e1c9ca2c51de57e" | |
}, | |
"truncated": 0, | |
"non_truncated": 100, | |
"padded": 400, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:clinical_knowledge|5": { | |
"hashes": { | |
"hash_examples": "ffbb9c7b2be257f9", | |
"hash_full_prompts": "595feee698057167", | |
"hash_input_tokens": "896539d33768791a", | |
"hash_cont_tokens": "de872053260a1588" | |
}, | |
"truncated": 0, | |
"non_truncated": 265, | |
"padded": 1060, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:college_biology|5": { | |
"hashes": { | |
"hash_examples": "3ee77f176f38eb8e", | |
"hash_full_prompts": "dcd354e231c805ee", | |
"hash_input_tokens": "56c8c2aa3e63f094", | |
"hash_cont_tokens": "9ace296b3e00bba3" | |
}, | |
"truncated": 0, | |
"non_truncated": 144, | |
"padded": 576, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:college_chemistry|5": { | |
"hashes": { | |
"hash_examples": "ce61a69c46d47aeb", | |
"hash_full_prompts": "a520ca0fd7868631", | |
"hash_input_tokens": "0049443634b997e3", | |
"hash_cont_tokens": "9e1c9ca2c51de57e" | |
}, | |
"truncated": 0, | |
"non_truncated": 100, | |
"padded": 400, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:college_computer_science|5": { | |
"hashes": { | |
"hash_examples": "32805b52d7d5daab", | |
"hash_full_prompts": "ae8f53adf4b6a6e3", | |
"hash_input_tokens": "894bbabad16b75a1", | |
"hash_cont_tokens": "9e1c9ca2c51de57e" | |
}, | |
"truncated": 0, | |
"non_truncated": 100, | |
"padded": 400, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:college_mathematics|5": { | |
"hashes": { | |
"hash_examples": "55da1a0a0bd33722", | |
"hash_full_prompts": "39cd3169534550f3", | |
"hash_input_tokens": "5bfda6d5c7af507c", | |
"hash_cont_tokens": "9e1c9ca2c51de57e" | |
}, | |
"truncated": 0, | |
"non_truncated": 100, | |
"padded": 400, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:college_medicine|5": { | |
"hashes": { | |
"hash_examples": "c33e143163049176", | |
"hash_full_prompts": "bca31c5d5f3a0e4a", | |
"hash_input_tokens": "13452a8f3d9b4b3d", | |
"hash_cont_tokens": "c80c0b5489bdbc5a" | |
}, | |
"truncated": 0, | |
"non_truncated": 173, | |
"padded": 692, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:college_physics|5": { | |
"hashes": { | |
"hash_examples": "ebdab1cdb7e555df", | |
"hash_full_prompts": "f819d74029f4a018", | |
"hash_input_tokens": "57c45bd30a378407", | |
"hash_cont_tokens": "569fcb9ac44734ae" | |
}, | |
"truncated": 0, | |
"non_truncated": 102, | |
"padded": 408, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:computer_security|5": { | |
"hashes": { | |
"hash_examples": "a24fd7d08a560921", | |
"hash_full_prompts": "d0f4d31508009cd6", | |
"hash_input_tokens": "0af9499b3cb67d95", | |
"hash_cont_tokens": "9e1c9ca2c51de57e" | |
}, | |
"truncated": 0, | |
"non_truncated": 100, | |
"padded": 400, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:conceptual_physics|5": { | |
"hashes": { | |
"hash_examples": "8300977a79386993", | |
"hash_full_prompts": "6e2f619c2f0da087", | |
"hash_input_tokens": "00b0c9ac0fc683e8", | |
"hash_cont_tokens": "6e88c64c1a76752a" | |
}, | |
"truncated": 0, | |
"non_truncated": 235, | |
"padded": 940, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:econometrics|5": { | |
"hashes": { | |
"hash_examples": "ddde36788a04a46f", | |
"hash_full_prompts": "3f81ad69c49e1691", | |
"hash_input_tokens": "9314d720a35c62b6", | |
"hash_cont_tokens": "a315e0e16c922c3c" | |
}, | |
"truncated": 0, | |
"non_truncated": 114, | |
"padded": 456, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:electrical_engineering|5": { | |
"hashes": { | |
"hash_examples": "acbc5def98c19b3f", | |
"hash_full_prompts": "f5ab31c3b1d51682", | |
"hash_input_tokens": "863125c49d60d6a4", | |
"hash_cont_tokens": "44c72e6a7422c304" | |
}, | |
"truncated": 0, | |
"non_truncated": 145, | |
"padded": 580, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:elementary_mathematics|5": { | |
"hashes": { | |
"hash_examples": "146e61d07497a9bd", | |
"hash_full_prompts": "3e6f38a631108730", | |
"hash_input_tokens": "ed58bf384a932c74", | |
"hash_cont_tokens": "cac0a6c304791bb7" | |
}, | |
"truncated": 0, | |
"non_truncated": 378, | |
"padded": 1512, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:formal_logic|5": { | |
"hashes": { | |
"hash_examples": "8635216e1909a03f", | |
"hash_full_prompts": "2db73981fed3cf02", | |
"hash_input_tokens": "78b4957033a990a3", | |
"hash_cont_tokens": "8801fad3bbc72e57" | |
}, | |
"truncated": 0, | |
"non_truncated": 126, | |
"padded": 504, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:global_facts|5": { | |
"hashes": { | |
"hash_examples": "30b315aa6353ee47", | |
"hash_full_prompts": "3b5eef82483c02a6", | |
"hash_input_tokens": "65cf7f73e20e1bc1", | |
"hash_cont_tokens": "9e1c9ca2c51de57e" | |
}, | |
"truncated": 0, | |
"non_truncated": 100, | |
"padded": 400, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:high_school_biology|5": { | |
"hashes": { | |
"hash_examples": "c9136373af2180de", | |
"hash_full_prompts": "97a500550ada1104", | |
"hash_input_tokens": "1c299ee1038cf043", | |
"hash_cont_tokens": "2d57d9e2c5a1fd64" | |
}, | |
"truncated": 0, | |
"non_truncated": 310, | |
"padded": 1240, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:high_school_chemistry|5": { | |
"hashes": { | |
"hash_examples": "b0661bfa1add6404", | |
"hash_full_prompts": "7d42623066fb1e8e", | |
"hash_input_tokens": "38aa4f175383a891", | |
"hash_cont_tokens": "bb0fd92673ddfb31" | |
}, | |
"truncated": 0, | |
"non_truncated": 203, | |
"padded": 812, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:high_school_computer_science|5": { | |
"hashes": { | |
"hash_examples": "80fc1d623a3d665f", | |
"hash_full_prompts": "2af192ae1faf8c63", | |
"hash_input_tokens": "5a1229c044a91023", | |
"hash_cont_tokens": "9e1c9ca2c51de57e" | |
}, | |
"truncated": 0, | |
"non_truncated": 100, | |
"padded": 400, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:high_school_european_history|5": { | |
"hashes": { | |
"hash_examples": "854da6e5af0fe1a1", | |
"hash_full_prompts": "189af6182c551e23", | |
"hash_input_tokens": "f0e54538395a12c1", | |
"hash_cont_tokens": "16e494cddccc4a04" | |
}, | |
"truncated": 0, | |
"non_truncated": 165, | |
"padded": 656, | |
"non_padded": 4, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:high_school_geography|5": { | |
"hashes": { | |
"hash_examples": "7dc963c7acd19ad8", | |
"hash_full_prompts": "0906f591b7f79a10", | |
"hash_input_tokens": "40aceb5dde64fe64", | |
"hash_cont_tokens": "16b7f65a07b3d47b" | |
}, | |
"truncated": 0, | |
"non_truncated": 198, | |
"padded": 792, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:high_school_government_and_politics|5": { | |
"hashes": { | |
"hash_examples": "1f675dcdebc9758f", | |
"hash_full_prompts": "7223a4aebabcdcbd", | |
"hash_input_tokens": "96a4444be05f5ede", | |
"hash_cont_tokens": "476e87fd675136aa" | |
}, | |
"truncated": 0, | |
"non_truncated": 193, | |
"padded": 772, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:high_school_macroeconomics|5": { | |
"hashes": { | |
"hash_examples": "2fb32cf2d80f0b35", | |
"hash_full_prompts": "9c32c005a808c453", | |
"hash_input_tokens": "a78ba4100d84ecc5", | |
"hash_cont_tokens": "b0c7b4c5f7bdf3e7" | |
}, | |
"truncated": 0, | |
"non_truncated": 390, | |
"padded": 1560, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:high_school_mathematics|5": { | |
"hashes": { | |
"hash_examples": "fd6646fdb5d58a1f", | |
"hash_full_prompts": "61845b4e3d0eafe9", | |
"hash_input_tokens": "72e903543d60e864", | |
"hash_cont_tokens": "1a05d6ff49846fd1" | |
}, | |
"truncated": 0, | |
"non_truncated": 270, | |
"padded": 1080, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:high_school_microeconomics|5": { | |
"hashes": { | |
"hash_examples": "2118f21f71d87d84", | |
"hash_full_prompts": "020f7f6e77a6b641", | |
"hash_input_tokens": "8b428c95ab32cdeb", | |
"hash_cont_tokens": "0e7f0645ffffd6cd" | |
}, | |
"truncated": 0, | |
"non_truncated": 238, | |
"padded": 949, | |
"non_padded": 3, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:high_school_physics|5": { | |
"hashes": { | |
"hash_examples": "dc3ce06378548565", | |
"hash_full_prompts": "571b28c0f53b90a0", | |
"hash_input_tokens": "0862d9ba4184f5e6", | |
"hash_cont_tokens": "41ca6560b8c10183" | |
}, | |
"truncated": 0, | |
"non_truncated": 151, | |
"padded": 604, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:high_school_psychology|5": { | |
"hashes": { | |
"hash_examples": "c8d1d98a40e11f2f", | |
"hash_full_prompts": "896e9a19476b90ed", | |
"hash_input_tokens": "539679e51cf0dadf", | |
"hash_cont_tokens": "53a17ff85c607844" | |
}, | |
"truncated": 0, | |
"non_truncated": 545, | |
"padded": 2178, | |
"non_padded": 2, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:high_school_statistics|5": { | |
"hashes": { | |
"hash_examples": "666c8759b98ee4ff", | |
"hash_full_prompts": "9ca986b471235e07", | |
"hash_input_tokens": "d2df2e9ec9cc5ff9", | |
"hash_cont_tokens": "bc9063ad140cc941" | |
}, | |
"truncated": 0, | |
"non_truncated": 216, | |
"padded": 864, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:high_school_us_history|5": { | |
"hashes": { | |
"hash_examples": "95fef1c4b7d3f81e", | |
"hash_full_prompts": "b4616b587c96945d", | |
"hash_input_tokens": "1b9a891fe1e28335", | |
"hash_cont_tokens": "5cf777085ba01096" | |
}, | |
"truncated": 0, | |
"non_truncated": 204, | |
"padded": 816, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:high_school_world_history|5": { | |
"hashes": { | |
"hash_examples": "7e5085b6184b0322", | |
"hash_full_prompts": "e790690fb05fa0d1", | |
"hash_input_tokens": "60fc90341eab6ac2", | |
"hash_cont_tokens": "152af2d9e4830517" | |
}, | |
"truncated": 0, | |
"non_truncated": 237, | |
"padded": 948, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:human_aging|5": { | |
"hashes": { | |
"hash_examples": "c17333e7c7c10797", | |
"hash_full_prompts": "327f9f213650f977", | |
"hash_input_tokens": "3527cd9b1efd6b7c", | |
"hash_cont_tokens": "da4d9eaa044021dd" | |
}, | |
"truncated": 0, | |
"non_truncated": 223, | |
"padded": 892, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:human_sexuality|5": { | |
"hashes": { | |
"hash_examples": "4edd1e9045df5e3d", | |
"hash_full_prompts": "0b6a52b3d3863745", | |
"hash_input_tokens": "7a97714c98ec3df0", | |
"hash_cont_tokens": "1b99e384258a4eeb" | |
}, | |
"truncated": 0, | |
"non_truncated": 131, | |
"padded": 524, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:international_law|5": { | |
"hashes": { | |
"hash_examples": "db2fa00d771a062a", | |
"hash_full_prompts": "429b8d84640cdf75", | |
"hash_input_tokens": "7e572d7ea1a3e509", | |
"hash_cont_tokens": "cbf02c30cdded208" | |
}, | |
"truncated": 0, | |
"non_truncated": 121, | |
"padded": 484, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:jurisprudence|5": { | |
"hashes": { | |
"hash_examples": "e956f86b124076fe", | |
"hash_full_prompts": "571f9505d9f6fa3d", | |
"hash_input_tokens": "e771bba2041d48e1", | |
"hash_cont_tokens": "4b248cf879d97a50" | |
}, | |
"truncated": 0, | |
"non_truncated": 108, | |
"padded": 424, | |
"non_padded": 8, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:logical_fallacies|5": { | |
"hashes": { | |
"hash_examples": "956e0e6365ab79f1", | |
"hash_full_prompts": "abf6d18a0245c552", | |
"hash_input_tokens": "7016f4de62d61e8f", | |
"hash_cont_tokens": "6d9c35172b158838" | |
}, | |
"truncated": 0, | |
"non_truncated": 163, | |
"padded": 632, | |
"non_padded": 20, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:machine_learning|5": { | |
"hashes": { | |
"hash_examples": "397997cc6f4d581e", | |
"hash_full_prompts": "8b9115560a815fab", | |
"hash_input_tokens": "a718bd4f9fb8eab0", | |
"hash_cont_tokens": "66c3ec85fee2fc98" | |
}, | |
"truncated": 0, | |
"non_truncated": 112, | |
"padded": 448, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:management|5": { | |
"hashes": { | |
"hash_examples": "2bcbe6f6ca63d740", | |
"hash_full_prompts": "f18191cecdc130be", | |
"hash_input_tokens": "dd6a99048a822e5a", | |
"hash_cont_tokens": "5e2470abd1fb9d10" | |
}, | |
"truncated": 0, | |
"non_truncated": 103, | |
"padded": 412, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:marketing|5": { | |
"hashes": { | |
"hash_examples": "8ddb20d964a1b065", | |
"hash_full_prompts": "ad9ff50246bf7d49", | |
"hash_input_tokens": "fb59075fb468b035", | |
"hash_cont_tokens": "27fe68d9630f8999" | |
}, | |
"truncated": 0, | |
"non_truncated": 234, | |
"padded": 916, | |
"non_padded": 20, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:medical_genetics|5": { | |
"hashes": { | |
"hash_examples": "182a71f4763d2cea", | |
"hash_full_prompts": "e95c568978da29c1", | |
"hash_input_tokens": "6ec76fde9dca6553", | |
"hash_cont_tokens": "9e1c9ca2c51de57e" | |
}, | |
"truncated": 0, | |
"non_truncated": 100, | |
"padded": 400, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:miscellaneous|5": { | |
"hashes": { | |
"hash_examples": "4c404fdbb4ca57fc", | |
"hash_full_prompts": "468305dc71aa217c", | |
"hash_input_tokens": "9ab5ce7430aeeff7", | |
"hash_cont_tokens": "dfa423a160edd337" | |
}, | |
"truncated": 0, | |
"non_truncated": 783, | |
"padded": 3128, | |
"non_padded": 4, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:moral_disputes|5": { | |
"hashes": { | |
"hash_examples": "60cbd2baa3fea5c9", | |
"hash_full_prompts": "7a24f9c6f83420f2", | |
"hash_input_tokens": "17712020d9c38d0f", | |
"hash_cont_tokens": "bef966e6669349be" | |
}, | |
"truncated": 0, | |
"non_truncated": 346, | |
"padded": 1380, | |
"non_padded": 4, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:moral_scenarios|5": { | |
"hashes": { | |
"hash_examples": "fd8b0431fbdd75ef", | |
"hash_full_prompts": "8723c262038898c8", | |
"hash_input_tokens": "a4a16b58339a1b08", | |
"hash_cont_tokens": "a7bfdd944d86bcb5" | |
}, | |
"truncated": 0, | |
"non_truncated": 895, | |
"padded": 3575, | |
"non_padded": 5, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:nutrition|5": { | |
"hashes": { | |
"hash_examples": "71e55e2b829b6528", | |
"hash_full_prompts": "cc3034694d476c82", | |
"hash_input_tokens": "4589c74e55901b66", | |
"hash_cont_tokens": "fcda7736026f2449" | |
}, | |
"truncated": 0, | |
"non_truncated": 306, | |
"padded": 1224, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:philosophy|5": { | |
"hashes": { | |
"hash_examples": "a6d489a8d208fa4b", | |
"hash_full_prompts": "d92988a447a6ce08", | |
"hash_input_tokens": "fa85837aaec1aef6", | |
"hash_cont_tokens": "0f39b851342e8986" | |
}, | |
"truncated": 0, | |
"non_truncated": 311, | |
"padded": 1244, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:prehistory|5": { | |
"hashes": { | |
"hash_examples": "6cc50f032a19acaa", | |
"hash_full_prompts": "0d0d33c8f9bed861", | |
"hash_input_tokens": "735ed41425466729", | |
"hash_cont_tokens": "b60e45d3e9856b35" | |
}, | |
"truncated": 0, | |
"non_truncated": 324, | |
"padded": 1280, | |
"non_padded": 16, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:professional_accounting|5": { | |
"hashes": { | |
"hash_examples": "50f57ab32f5f6cea", | |
"hash_full_prompts": "9c809e7b8ca8ec1f", | |
"hash_input_tokens": "b0c851d675e5355b", | |
"hash_cont_tokens": "a0c4e121b7293818" | |
}, | |
"truncated": 0, | |
"non_truncated": 282, | |
"padded": 1112, | |
"non_padded": 16, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:professional_law|5": { | |
"hashes": { | |
"hash_examples": "a8fdc85c64f4b215", | |
"hash_full_prompts": "246b3e8a9054a5de", | |
"hash_input_tokens": "c27b16ef17f69218", | |
"hash_cont_tokens": "68b662abeba54fbc" | |
}, | |
"truncated": 0, | |
"non_truncated": 1534, | |
"padded": 6136, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:professional_medicine|5": { | |
"hashes": { | |
"hash_examples": "c373a28a3050a73a", | |
"hash_full_prompts": "f66dd653b5c5022b", | |
"hash_input_tokens": "955343929a6793cb", | |
"hash_cont_tokens": "6caeac5412bb4a09" | |
}, | |
"truncated": 0, | |
"non_truncated": 272, | |
"padded": 1088, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:professional_psychology|5": { | |
"hashes": { | |
"hash_examples": "bf5254fe818356af", | |
"hash_full_prompts": "03228f18e58fb42c", | |
"hash_input_tokens": "a18463f8187e4322", | |
"hash_cont_tokens": "79b091252a1095a9" | |
}, | |
"truncated": 0, | |
"non_truncated": 612, | |
"padded": 2448, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:public_relations|5": { | |
"hashes": { | |
"hash_examples": "b66d52e28e7d14e0", | |
"hash_full_prompts": "2717ec2f9cc3ea3f", | |
"hash_input_tokens": "3118fb19254356b8", | |
"hash_cont_tokens": "987115a77c8704f0" | |
}, | |
"truncated": 0, | |
"non_truncated": 110, | |
"padded": 436, | |
"non_padded": 4, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:security_studies|5": { | |
"hashes": { | |
"hash_examples": "514c14feaf000ad9", | |
"hash_full_prompts": "fd10221b4be3bf11", | |
"hash_input_tokens": "619ae48b231f13d1", | |
"hash_cont_tokens": "6c35bc7e96074b27" | |
}, | |
"truncated": 0, | |
"non_truncated": 245, | |
"padded": 980, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:sociology|5": { | |
"hashes": { | |
"hash_examples": "f6c9bc9d18c80870", | |
"hash_full_prompts": "16bc50365bda7e74", | |
"hash_input_tokens": "e77c9db987dfeede", | |
"hash_cont_tokens": "32af622f73b2e657" | |
}, | |
"truncated": 0, | |
"non_truncated": 201, | |
"padded": 804, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:us_foreign_policy|5": { | |
"hashes": { | |
"hash_examples": "ed7b78629db6678f", | |
"hash_full_prompts": "249ca3f4999e41ad", | |
"hash_input_tokens": "0fa36661f20b1b58", | |
"hash_cont_tokens": "9e1c9ca2c51de57e" | |
}, | |
"truncated": 0, | |
"non_truncated": 100, | |
"padded": 400, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:virology|5": { | |
"hashes": { | |
"hash_examples": "bc52ffdc3f9b994a", | |
"hash_full_prompts": "09939d976cecacd7", | |
"hash_input_tokens": "b8237a5fe3c03938", | |
"hash_cont_tokens": "beded8c3660dc8f5" | |
}, | |
"truncated": 0, | |
"non_truncated": 166, | |
"padded": 664, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
}, | |
"lighteval|mmlu:world_religions|5": { | |
"hashes": { | |
"hash_examples": "ecdb4a4f94f62930", | |
"hash_full_prompts": "addabd4dc9734c08", | |
"hash_input_tokens": "23943b2941071751", | |
"hash_cont_tokens": "9b1952a4af3d6a73" | |
}, | |
"truncated": 0, | |
"non_truncated": 171, | |
"padded": 684, | |
"non_padded": 0, | |
"effective_few_shots": 5.0, | |
"num_truncated_few_shots": 0 | |
} | |
}, | |
"summary_general": { | |
"hashes": { | |
"hash_examples": "341a076d0beb7048", | |
"hash_full_prompts": "11973fef11ba4c9d", | |
"hash_input_tokens": "0e9d676b8e37ef05", | |
"hash_cont_tokens": "25e9f343d6b95644" | |
}, | |
"truncated": 0, | |
"non_truncated": 14042, | |
"padded": 56062, | |
"non_padded": 106, | |
"num_truncated_few_shots": 0 | |
} | |
} |