Spaces:
Restarting
Restarting
import json | |
from pathlib import Path | |
import gradio as gr | |
import pandas as pd | |
TITLE = """<h1 align="center" id="space-title">LLM Leaderboard for H4 Models</h1>""" | |
DESCRIPTION = f""" | |
Evaluation of H4 and community models across a diverse range of benchmarks from [LightEval](https://github.com/huggingface/lighteval). All scores are reported as accuracy. | |
""" | |
def get_leaderboard_df(merge_values: bool = True): | |
filepaths = list(Path("eval_results").rglob("*.json")) | |
# Parse filepaths to get unique models | |
models = set() | |
for filepath in filepaths: | |
path_parts = Path(filepath).parts | |
model_revision = "_".join(path_parts[1:4]) | |
models.add(model_revision) | |
# Initialize DataFrame | |
df = pd.DataFrame(index=list(models)) | |
# Extract data from each file and populate the DataFrame | |
for filepath in filepaths: | |
path_parts = Path(filepath).parts | |
date = filepath.stem.split("_")[-1][:-3].split("T")[0] | |
model_revision = "_".join(path_parts[1:4]) + "_" + date | |
task = path_parts[4].capitalize() | |
df.loc[model_revision, "Date"] = date | |
with open(filepath, "r") as file: | |
data = json.load(file) | |
first_result_key = next(iter(data["results"])) # gets the first key in 'results' | |
# TruthfulQA has two metrics, so we need to pick the `mc2` one that's reported on the leaderboard | |
if task.lower() == "truthfulqa": | |
value = data["results"][first_result_key]["truthfulqa_mc2"] | |
# IFEval has several metrics but we report just the prompt-loose-acc one | |
elif task.lower() == "ifeval": | |
value = data["results"][first_result_key]["prompt_level_loose_acc"] | |
# MMLU has several metrics but we report just the average one | |
elif task.lower() == "mmlu": | |
value = [v["acc"] for k, v in data["results"].items() if "_average" in k.lower()][0] | |
# HellaSwag and ARC reports acc_norm | |
elif task.lower() in ["hellaswag", "arc"]: | |
value = data["results"][first_result_key]["acc_norm"] | |
# BBH has several metrics but we report just the average one | |
elif task.lower() == "bbh": | |
if "all" in data["results"]: | |
value = data["results"]["all"]["acc"] | |
else: | |
value = -100 | |
# AGIEval reports acc_norm | |
elif task.lower() == "agieval": | |
value = data["results"]["all"]["acc_norm"] | |
# MATH reports qem | |
elif task.lower() == "math": | |
value = data["results"]["all"]["qem"] | |
# MINIMATH reports qem | |
elif task.lower() == "mini_math": | |
value = data["results"]["all"]["qem"] | |
else: | |
first_metric_key = next( | |
iter(data["results"][first_result_key]) | |
) # gets the first key in the first result | |
value = data["results"][first_result_key][first_metric_key] # gets the value of the first metric | |
df.loc[model_revision, task] = value | |
# Put IFEval / BBH / AGIEval in first columns | |
ifeval_col = df.pop("Ifeval") | |
df.insert(1, "Ifeval", ifeval_col) | |
bbh_col = df.pop("Bbh") | |
df.insert(2, "Bbh", bbh_col) | |
agieval_col = df.pop("Agieval") | |
df.insert(3, "Agieval", agieval_col) | |
# Drop rows where every entry is NaN | |
df = df.dropna(how="all", axis=0, subset=[c for c in df.columns if c != "Date"]) | |
df.insert(loc=1, column="Average", value=df.mean(axis=1, numeric_only=True)) | |
# Convert all values to percentage | |
df[df.select_dtypes(include=["number"]).columns] *= 100.0 | |
df = df.sort_values(by=["Average"], ascending=False) | |
df = df.reset_index().rename(columns={"index": "Model"}).round(2) | |
# Strip off date from model name | |
df["Model"] = df["Model"].apply(lambda x: x.rsplit("_", 1)[0]) | |
if merge_values: | |
merged_df = df.drop(["Date", "Average"], axis=1).groupby("Model").max().reset_index() | |
merged_df.insert(loc=0, column="Average", value=merged_df.mean(axis=1, numeric_only=True)) | |
df = df[["Model", "Date"]].merge(merged_df, on="Model", how="left") | |
df.drop_duplicates(subset=["Model"], inplace=True) | |
df = df.sort_values(by=["Average"], ascending=False).round(2) | |
return df | |
def refresh(merge_values: bool = True): | |
return get_leaderboard_df(merge_values) | |
# Function to update the table based on search query | |
def update_table(search_query): | |
df = get_leaderboard_df() | |
if search_query: | |
search_terms = search_query.split(";") | |
search_terms = [term.strip().lower() for term in search_terms] | |
pattern = "|".join(search_terms) | |
df = df[df["Model"].str.lower().str.contains(pattern, regex=True)] | |
return df | |
leaderboard_df = get_leaderboard_df() | |
demo = gr.Blocks() | |
with demo: | |
gr.HTML(TITLE) | |
with gr.Column(): | |
gr.Markdown(DESCRIPTION, elem_classes="markdown-text") | |
with gr.Row(): | |
search_bar = gr.Textbox(placeholder="Search for your model...", show_label=False) | |
merge_values = gr.Checkbox( | |
value=True, | |
label="Merge evals", | |
info="Merge evals for the same model. If there are duplicates, we display the largest one.", | |
) | |
with gr.Group(): | |
leaderboard_df = get_leaderboard_df() | |
leaderboard_table = gr.Dataframe(value=leaderboard_df, wrap=True, height=1000) | |
with gr.Row(): | |
refresh_button = gr.Button("Refresh") | |
merge_values.change(refresh, inputs=[merge_values], outputs=[leaderboard_table]) | |
search_bar.submit(update_table, inputs=[search_bar], outputs=[leaderboard_table]) | |
refresh_button.click(refresh, inputs=[], outputs=[leaderboard_table]) | |
demo.launch() | |