Spaces:
Building
Building
import json | |
from pathlib import Path | |
import gradio as gr | |
import pandas as pd | |
TITLE = """<h1 align="center" id="space-title">LLM Leaderboard for H4 Models</h1>""" | |
DESCRIPTION = f""" | |
Evaluation of H4 and community models across a diverse range of benchmarks from [LightEval](https://github.com/huggingface/lighteval). All scores are reported as accuracy. | |
""" | |
BENCHMARKS_TO_SKIP = ["math", "mini_math"] | |
def get_leaderboard_df(merge_values: bool = True): | |
filepaths = list(Path("eval_results").rglob("*.json")) | |
# Parse filepaths to get unique models | |
models = set() | |
for filepath in filepaths: | |
path_parts = Path(filepath).parts | |
model_revision = "_".join(path_parts[1:4]) | |
models.add(model_revision) | |
# Initialize DataFrame | |
df = pd.DataFrame(index=list(models)) | |
# Extract data from each file and populate the DataFrame | |
for filepath in filepaths: | |
path_parts = Path(filepath).parts | |
date = filepath.stem.split("_")[-1][:-3].split("T")[0] | |
model_revision = "_".join(path_parts[1:4]) + "_" + date | |
task = path_parts[4].capitalize() | |
df.loc[model_revision, "Date"] = date | |
with open(filepath, "r") as file: | |
data = json.load(file) | |
first_result_key = next(iter(data["results"])) # gets the first key in 'results' | |
# Skip benchmarks that we don't want to include in the leaderboard | |
if task.lower() in BENCHMARKS_TO_SKIP: | |
continue | |
# TruthfulQA has two metrics, so we need to pick the `mc2` one that's reported on the leaderboard | |
if task.lower() == "truthfulqa": | |
value = data["results"][first_result_key]["truthfulqa_mc2"] | |
# IFEval has several metrics but we report just the prompt-loose-acc one | |
elif task.lower() == "ifeval": | |
value = data["results"][first_result_key]["prompt_level_loose_acc"] | |
# MMLU has several metrics but we report just the average one | |
elif task.lower() == "mmlu": | |
value = [v["acc"] for k, v in data["results"].items() if "_average" in k.lower()][0] | |
# HellaSwag and ARC reports acc_norm | |
elif task.lower() in ["hellaswag", "arc"]: | |
value = data["results"][first_result_key]["acc_norm"] | |
# BBH has several metrics but we report just the average one | |
elif task.lower() == "bbh": | |
if "all" in data["results"]: | |
value = data["results"]["all"]["acc"] | |
else: | |
value = -100 | |
# AGIEval reports acc_norm | |
elif task.lower() == "agieval": | |
value = data["results"]["all"]["acc_norm"] | |
# MATH reports qem | |
elif task.lower() in ["math", "math_v2", "aimo_kaggle"]: | |
value = data["results"]["all"]["qem"] | |
else: | |
first_metric_key = next( | |
iter(data["results"][first_result_key]) | |
) # gets the first key in the first result | |
value = data["results"][first_result_key][first_metric_key] # gets the value of the first metric | |
# For mini_math we report 5 metrics, one for each level and store each one as a separate row in the dataframe | |
if task.lower() in ["mini_math_v2"]: | |
for k, v in data["results"].items(): | |
if k != "all": | |
level = k.split("|")[1].split(":")[-1] | |
value = v["qem"] | |
df.loc[model_revision, f"{task}_{level}"] = value | |
# For kaggle_pot we report N metrics, one for each prompt and store each one as a separate row in the dataframe | |
elif task.lower() in ["aimo_kaggle_medium_pot"]: | |
for k, v in data["results"].items(): | |
if k != "all" and "_average" not in k: | |
version = k.split("|")[1].split(":")[-1] | |
value = v["qem"] | |
df.loc[model_revision, f"{task}_{version}"] = value | |
# For kaggle_pot we report N metrics, one for each prompt and store each one as a separate row in the dataframe | |
elif task.lower() in ["aimo_kaggle_hard_pot"]: | |
for k, v in data["results"].items(): | |
if k != "all" and "_average" not in k: | |
version = k.split("|")[1].split(":")[-1] | |
value = v["qem"] | |
df.loc[model_revision, f"{task}_{version}"] = value | |
# For AlpacaEval we report base winrate and lenght corrected one | |
elif task.lower() == "alpaca_eval": | |
value = data["results"][first_result_key]["win_rate"] | |
df.loc[model_revision, "Alpaca_eval"] = value / 100.0 | |
value = data["results"][first_result_key]["length_controlled_winrate"] | |
df.loc[model_revision, "Alpaca_eval_lc"] = value / 100.0 | |
else: | |
df.loc[model_revision, task] = value | |
# Put IFEval / BBH / AGIEval / AlpacaEval in first columns | |
alpaca_col = df.pop("Alpaca_eval") | |
df.insert(1, "Alpaca_eval", alpaca_col) | |
alpaca_col = df.pop("Alpaca_eval_lc") | |
df.insert(2, "Alpaca_eval_lc", alpaca_col) | |
ifeval_col = df.pop("Ifeval") | |
df.insert(3, "Ifeval", ifeval_col) | |
bbh_col = df.pop("Bbh") | |
df.insert(4, "Bbh", bbh_col) | |
agieval_col = df.pop("Agieval") | |
df.insert(5, "Agieval", agieval_col) | |
gsm8k_col = df.pop("Gsm8k") | |
df.insert(6, "Gsm8k", gsm8k_col) | |
mmlu_col = df.pop("Mmlu") | |
df.insert(7, "Mmlu", mmlu_col) | |
# Drop rows where every entry is NaN | |
df = df.dropna(how="all", axis=0, subset=[c for c in df.columns if c != "Date"]) | |
df.insert(loc=1, column="Average", value=df.mean(axis=1, numeric_only=True)) | |
# Convert all values to percentage | |
df[df.select_dtypes(include=["number"]).columns] *= 100.0 | |
df = df.sort_values(by=["Average"], ascending=False) | |
df = df.reset_index().rename(columns={"index": "Model"}).round(2) | |
# Strip off date from model name | |
df["Model"] = df["Model"].apply(lambda x: x.rsplit("_", 1)[0]) | |
if merge_values: | |
merged_df = df.drop(["Date", "Average"], axis=1).groupby("Model").max().reset_index() | |
merged_df.insert(loc=0, column="Average", value=merged_df.mean(axis=1, numeric_only=True)) | |
df = df[["Model", "Date"]].merge(merged_df, on="Model", how="left") | |
df.drop_duplicates(subset=["Model"], inplace=True) | |
df = df.sort_values(by=["Average"], ascending=False).round(2) | |
# Trim minimath column names | |
df.columns = [c.replace("_level_", "_l") for c in df.columns] | |
# Trim AIMO column names | |
df.columns = [c.replace("Aimo_", "") for c in df.columns] | |
return df | |
def refresh(merge_values: bool = True): | |
return get_leaderboard_df(merge_values) | |
# Function to update the table based on search query | |
def update_table(search_query): | |
df = get_leaderboard_df() | |
if search_query: | |
search_terms = search_query.split(";") | |
search_terms = [term.strip().lower() for term in search_terms] | |
pattern = "|".join(search_terms) | |
df = df[df["Model"].str.lower().str.contains(pattern, regex=True)] | |
return df | |
def filter_columns(cols): | |
index_cols = list(leaderboard_df.columns[:2]) | |
new_cols = index_cols + cols | |
df = get_leaderboard_df() | |
df = df.copy()[new_cols] | |
# Drop rows with NaN values | |
df = df.copy().dropna(how="all", axis=0, subset=[c for c in df.columns if c in cols]) | |
# Recompute average | |
df["Average"] = df.mean(axis=1, numeric_only=True) | |
return df | |
leaderboard_df = get_leaderboard_df() | |
demo = gr.Blocks() | |
with demo: | |
gr.HTML(TITLE) | |
with gr.Column(): | |
gr.Markdown(DESCRIPTION, elem_classes="markdown-text") | |
with gr.Row(): | |
search_bar = gr.Textbox(placeholder="Search for your model...", show_label=False) | |
merge_values = gr.Checkbox( | |
value=True, | |
label="Merge evals", | |
info="Merge evals for the same model. If there are duplicates, we display the largest one.", | |
) | |
with gr.Row(): | |
cols_bar = gr.CheckboxGroup( | |
choices=[c for c in leaderboard_df.columns[2:] if c != "Average"], | |
show_label=False, | |
info="Select columns to display", | |
) | |
with gr.Group(): | |
leaderboard_df = get_leaderboard_df() | |
leaderboard_table = gr.Dataframe( | |
value=leaderboard_df, | |
wrap=True, | |
height=1000, | |
column_widths=[400, 110] + [(220 + len(c)) for c in leaderboard_df.columns[2:]], | |
) | |
with gr.Row(): | |
refresh_button = gr.Button("Refresh") | |
cols_bar.change(filter_columns, inputs=[cols_bar], outputs=[leaderboard_table]) | |
merge_values.change(refresh, inputs=[merge_values], outputs=[leaderboard_table]) | |
search_bar.submit(update_table, inputs=[search_bar], outputs=[leaderboard_table]) | |
refresh_button.click(refresh, inputs=[], outputs=[leaderboard_table]) | |
demo.launch() | |