File size: 3,410 Bytes
aff26b6
 
 
 
 
 
 
 
 
a53938b
aff26b6
 
 
 
 
 
 
 
 
 
a53938b
aff26b6
 
 
 
 
 
 
 
a53938b
 
 
 
 
aff26b6
 
 
 
a53938b
 
 
37ce6d8
 
 
a53938b
 
 
 
 
aff26b6
 
37ce6d8
 
 
a53938b
aff26b6
 
 
 
 
 
 
 
 
c9b339f
 
 
 
 
 
 
 
 
 
 
aff26b6
 
 
 
 
 
 
 
c9b339f
 
aff26b6
8fe80ef
aff26b6
 
c9b339f
 
 
aff26b6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import json
from pathlib import Path

import gradio as gr
import pandas as pd

TITLE = """<h1 align="center" id="space-title">LLM Leaderboard for H4 Models</h1>"""

DESCRIPTION = f"""
Evaluation of H4 models across a diverse range of benchmarks from [LightEval](https://github.com/huggingface/lighteval)
"""


def get_leaderboard_df():
    filepaths = list(Path("eval_results").rglob("*.json"))

    # Parse filepaths to get unique models
    models = set()
    for filepath in filepaths:
        path_parts = Path(filepath).parts
        model_revision = "_".join(path_parts[1:4])
        models.add(model_revision)

    # Initialize DataFrame
    df = pd.DataFrame(index=list(models))

    # Extract data from each file and populate the DataFrame
    for filepath in filepaths:
        path_parts = Path(filepath).parts
        model_revision = "_".join(path_parts[1:4])
        task = path_parts[4].capitalize()
        # Extract timestamp from filepath
        timestamp = filepath.stem.split("_")[-1][:-3]
        df.loc[model_revision, "Timestamp"] = timestamp

        with open(filepath, "r") as file:
            data = json.load(file)
            first_result_key = next(iter(data["results"]))  # gets the first key in 'results'
            # TruthfulQA has two metrics, so we need to pick the `mc2` one that's reported on the leaderboard
            if task == "truthfulqa":
                value = data["results"][first_result_key]["truthfulqa_mc2"]
            # IFEval has several metrics but we report just the prompt-loose-acc one
            elif task == "ifeval":
                value = data["results"][first_result_key]["prompt_level_loose_acc"]
            else:
                first_metric_key = next(
                    iter(data["results"][first_result_key])
                )  # gets the first key in the first result
                value = data["results"][first_result_key][first_metric_key]  # gets the value of the first metric
            df.loc[model_revision, task] = value

    # Put IFEval in first column
    ifeval_col = df.pop("Ifeval")
    df.insert(1, "Ifeval", ifeval_col)
    df.insert(loc=1, column="Average", value=df.mean(axis=1, numeric_only=True))
    df = df.sort_values(by=["Average"], ascending=False)
    df = df.reset_index().rename(columns={"index": "Model"}).round(3)
    return df


def refresh():
    return get_leaderboard_df()


# Function to update the table based on search query
def update_table(search_query):
    df = get_leaderboard_df()
    if search_query:
        search_terms = search_query.split(";")
        search_terms = [term.strip() for term in search_terms]
        pattern = "|".join(search_terms)
        df = df[df["Model"].str.contains(pattern, regex=True)]
    return df


leaderboard_df = get_leaderboard_df()

demo = gr.Blocks()

with demo:
    gr.HTML(TITLE)
    with gr.Column():
        gr.Markdown(DESCRIPTION, elem_classes="markdown-text")
        with gr.Row():
            search_bar = gr.Textbox(placeholder="Search for your model...", show_label=False)
        with gr.Group():
            leaderboard_table = gr.Dataframe(value=leaderboard_df, wrap=True, height=1000)
        with gr.Row():
            refresh_button = gr.Button("Refresh")

    search_bar.submit(update_table, inputs=[search_bar], outputs=[leaderboard_table])
    refresh_button.click(refresh, inputs=[], outputs=[leaderboard_table])

demo.launch()