from datetime import datetime, timezone, timedelta from typing import Dict, Any, Optional, List import json import os from pathlib import Path import logging import aiohttp import asyncio import time from huggingface_hub import HfApi, CommitOperationAdd from huggingface_hub.utils import build_hf_headers from datasets import disable_progress_bar import sys import contextlib from concurrent.futures import ThreadPoolExecutor import tempfile from app.config import ( QUEUE_REPO, HF_TOKEN, EVAL_REQUESTS_PATH ) from app.config.hf_config import HF_ORGANIZATION from app.services.hf_service import HuggingFaceService from app.utils.model_validation import ModelValidator from app.services.votes import VoteService from app.core.cache import cache_config from app.core.formatting import LogFormatter # Disable datasets progress bars globally disable_progress_bar() logger = logging.getLogger(__name__) # Context manager to temporarily disable stdout and stderr @contextlib.contextmanager def suppress_output(): stdout = sys.stdout stderr = sys.stderr devnull = open(os.devnull, 'w') try: sys.stdout = devnull sys.stderr = devnull yield finally: sys.stdout = stdout sys.stderr = stderr devnull.close() class ProgressTracker: def __init__(self, total: int, desc: str = "Progress", update_frequency: int = 10): self.total = total self.current = 0 self.desc = desc self.start_time = time.time() self.update_frequency = update_frequency # Percentage steps self.last_update = -1 # Initial log with fancy formatting logger.info(LogFormatter.section(desc)) logger.info(LogFormatter.info(f"Starting processing of {total:,} items...")) sys.stdout.flush() def update(self, n: int = 1): self.current += n current_percentage = (self.current * 100) // self.total # Only update on frequency steps (e.g., 0%, 10%, 20%, etc.) if current_percentage >= self.last_update + self.update_frequency or current_percentage == 100: elapsed = time.time() - self.start_time rate = self.current / elapsed if elapsed > 0 else 0 remaining = (self.total - self.current) / rate if rate > 0 else 0 # Create progress stats stats = { "Progress": LogFormatter.progress_bar(self.current, self.total), "Items": f"{self.current:,}/{self.total:,}", "Time": f"⏱️ {elapsed:.1f}s elapsed, {remaining:.1f}s remaining", "Rate": f"🚀 {rate:.1f} items/s" } # Log progress using tree format for line in LogFormatter.tree(stats): logger.info(line) sys.stdout.flush() self.last_update = (current_percentage // self.update_frequency) * self.update_frequency def close(self): elapsed = time.time() - self.start_time rate = self.total / elapsed if elapsed > 0 else 0 # Final summary with fancy formatting logger.info(LogFormatter.section("COMPLETED")) stats = { "Total": f"{self.total:,} items", "Time": f"{elapsed:.1f}s", "Rate": f"{rate:.1f} items/s" } for line in LogFormatter.stats(stats): logger.info(line) logger.info("="*50) sys.stdout.flush() class ModelService(HuggingFaceService): _instance: Optional['ModelService'] = None _initialized = False def __new__(cls): if cls._instance is None: logger.info(LogFormatter.info("Creating new ModelService instance")) cls._instance = super(ModelService, cls).__new__(cls) return cls._instance def __init__(self): if not hasattr(self, '_init_done'): logger.info(LogFormatter.section("MODEL SERVICE INITIALIZATION")) super().__init__() self.validator = ModelValidator() self.vote_service = VoteService() self.eval_requests_path = cache_config.eval_requests_file logger.info(LogFormatter.info(f"Using eval requests path: {self.eval_requests_path}")) self.eval_requests_path.parent.mkdir(parents=True, exist_ok=True) self.hf_api = HfApi(token=HF_TOKEN) self.cached_models = None self.last_cache_update = 0 self.cache_ttl = cache_config.cache_ttl.total_seconds() self._init_done = True logger.info(LogFormatter.success("Initialization complete")) async def _download_and_process_file(self, file: str, session: aiohttp.ClientSession, progress: ProgressTracker) -> Optional[Dict]: """Download and process a file asynchronously""" try: # Build file URL url = f"https://huggingface.co/datasets/{QUEUE_REPO}/resolve/main/{file}" headers = build_hf_headers(token=self.token) # Download file async with session.get(url, headers=headers) as response: if response.status != 200: logger.error(LogFormatter.error(f"Failed to download {file}", f"HTTP {response.status}")) progress.update() return None try: # First read content as text text_content = await response.text() # Then parse JSON content = json.loads(text_content) except json.JSONDecodeError as e: logger.error(LogFormatter.error(f"Failed to decode JSON from {file}", e)) progress.update() return None # Get status and determine target status status = content.get("status", "PENDING").upper() target_status = None status_map = { "PENDING": ["PENDING"], "EVALUATING": ["RUNNING"], "FINISHED": ["FINISHED"] } for target, source_statuses in status_map.items(): if status in source_statuses: target_status = target break if not target_status: progress.update() return None # Calculate wait time try: submit_time = datetime.fromisoformat(content["submitted_time"].replace("Z", "+00:00")) if submit_time.tzinfo is None: submit_time = submit_time.replace(tzinfo=timezone.utc) current_time = datetime.now(timezone.utc) wait_time = current_time - submit_time model_info = { "name": content["model"], "submitter": content.get("sender", "Unknown"), "revision": content["revision"], "wait_time": f"{wait_time.total_seconds():.1f}s", "submission_time": content["submitted_time"], "status": target_status, "precision": content.get("precision", "Unknown") } progress.update() return model_info except (ValueError, TypeError) as e: logger.error(LogFormatter.error(f"Failed to process {file}", e)) progress.update() return None except Exception as e: logger.error(LogFormatter.error(f"Failed to load {file}", e)) progress.update() return None async def _refresh_models_cache(self): """Refresh the models cache""" try: logger.info(LogFormatter.section("CACHE REFRESH")) self._log_repo_operation("read", f"{HF_ORGANIZATION}/requests", "Refreshing models cache") # Initialize models dictionary models = { "finished": [], "evaluating": [], "pending": [] } try: logger.info(LogFormatter.subsection("DATASET LOADING")) logger.info(LogFormatter.info("Loading dataset...")) # Download entire dataset snapshot with suppress_output(): local_dir = self.hf_api.snapshot_download( repo_id=QUEUE_REPO, repo_type="dataset", token=self.token ) # List JSON files in local directory local_path = Path(local_dir) json_files = list(local_path.glob("**/*.json")) total_files = len(json_files) # Log repository stats stats = { "Total_Files": total_files, "Local_Dir": str(local_path), } for line in LogFormatter.stats(stats, "Repository Statistics"): logger.info(line) if not json_files: raise Exception("No JSON files found in repository") # Initialize progress tracker progress = ProgressTracker(total_files, "PROCESSING FILES") # Process local files model_submissions = {} # Dict to track latest submission for each (model_id, revision, precision) for file_path in json_files: try: with open(file_path, 'r') as f: content = json.load(f) # Get status and determine target status status = content.get("status", "PENDING").upper() target_status = None status_map = { "PENDING": ["PENDING"], "EVALUATING": ["RUNNING"], "FINISHED": ["FINISHED"] } for target, source_statuses in status_map.items(): if status in source_statuses: target_status = target break if not target_status: progress.update() continue # Calculate wait time try: submit_time = datetime.fromisoformat(content["submitted_time"].replace("Z", "+00:00")) if submit_time.tzinfo is None: submit_time = submit_time.replace(tzinfo=timezone.utc) current_time = datetime.now(timezone.utc) wait_time = current_time - submit_time model_info = { "name": content["model"], "submitter": content.get("sender", "Unknown"), "revision": content["revision"], "wait_time": f"{wait_time.total_seconds():.1f}s", "submission_time": content["submitted_time"], "status": target_status, "precision": content.get("precision", "Unknown") } # Use (model_id, revision, precision) as key to track latest submission key = (content["model"], content["revision"], content.get("precision", "Unknown")) if key not in model_submissions or submit_time > datetime.fromisoformat(model_submissions[key]["submission_time"].replace("Z", "+00:00")): model_submissions[key] = model_info except (ValueError, TypeError) as e: logger.error(LogFormatter.error(f"Failed to process {file_path.name}", e)) except Exception as e: logger.error(LogFormatter.error(f"Failed to load {file_path.name}", e)) finally: progress.update() # Populate models dict with deduplicated submissions for model_info in model_submissions.values(): models[model_info["status"].lower()].append(model_info) progress.close() # Final summary with fancy formatting logger.info(LogFormatter.section("CACHE SUMMARY")) stats = { "Finished": len(models["finished"]), "Evaluating": len(models["evaluating"]), "Pending": len(models["pending"]) } for line in LogFormatter.stats(stats, "Models by Status"): logger.info(line) logger.info("="*50) except Exception as e: logger.error(LogFormatter.error("Error processing files", e)) raise # Update cache self.cached_models = models self.last_cache_update = time.time() logger.info(LogFormatter.success("Cache updated successfully")) return models except Exception as e: logger.error(LogFormatter.error("Cache refresh failed", e)) raise async def initialize(self): """Initialize the model service""" if self._initialized: logger.info(LogFormatter.info("Service already initialized, using cached data")) return try: logger.info(LogFormatter.section("MODEL SERVICE INITIALIZATION")) # Check if cache already exists cache_path = cache_config.get_cache_path("datasets") if not cache_path.exists() or not any(cache_path.iterdir()): logger.info(LogFormatter.info("No existing cache found, initializing datasets cache...")) cache_config.flush_cache("datasets") else: logger.info(LogFormatter.info("Using existing datasets cache")) # Ensure eval requests directory exists self.eval_requests_path.parent.mkdir(parents=True, exist_ok=True) logger.info(LogFormatter.info(f"Eval requests directory: {self.eval_requests_path}")) # List existing files if self.eval_requests_path.exists(): files = list(self.eval_requests_path.glob("**/*.json")) stats = { "Total_Files": len(files), "Directory": str(self.eval_requests_path) } for line in LogFormatter.stats(stats, "Eval Requests"): logger.info(line) # Load initial cache await self._refresh_models_cache() self._initialized = True logger.info(LogFormatter.success("Model service initialization complete")) except Exception as e: logger.error(LogFormatter.error("Initialization failed", e)) raise async def get_models(self) -> Dict[str, List[Dict[str, Any]]]: """Get all models with their status""" if not self._initialized: logger.info(LogFormatter.info("Service not initialized, initializing now...")) await self.initialize() current_time = time.time() cache_age = current_time - self.last_cache_update # Check if cache needs refresh if not self.cached_models: logger.info(LogFormatter.info("No cached data available, refreshing cache...")) return await self._refresh_models_cache() elif cache_age > self.cache_ttl: logger.info(LogFormatter.info(f"Cache expired ({cache_age:.1f}s old, TTL: {self.cache_ttl}s)")) return await self._refresh_models_cache() else: logger.info(LogFormatter.info(f"Using cached data ({cache_age:.1f}s old)")) return self.cached_models async def submit_model( self, model_data: Dict[str, Any], user_id: str ) -> Dict[str, Any]: logger.info(LogFormatter.section("MODEL SUBMISSION")) self._log_repo_operation("write", f"{HF_ORGANIZATION}/requests", f"Submitting model {model_data['model_id']} by {user_id}") stats = { "Model": model_data["model_id"], "User": user_id, "Revision": model_data["revision"], "Precision": model_data["precision"], "Type": model_data["model_type"] } for line in LogFormatter.tree(stats, "Submission Details"): logger.info(line) # Validate required fields required_fields = [ "model_id", "base_model", "revision", "precision", "weight_type", "model_type", "use_chat_template" ] for field in required_fields: if field not in model_data: raise ValueError(f"Missing required field: {field}") # Get model info and validate it exists on HuggingFace try: logger.info(LogFormatter.subsection("MODEL VALIDATION")) # Get the model info to check if it exists model_info = self.hf_api.model_info( model_data["model_id"], revision=model_data["revision"], token=self.token ) if not model_info: raise Exception(f"Model {model_data['model_id']} not found on HuggingFace Hub") logger.info(LogFormatter.success("Model exists on HuggingFace Hub")) except Exception as e: logger.error(LogFormatter.error("Model validation failed", e)) raise # Update model revision with commit sha model_data["revision"] = model_info.sha # Check if model already exists in the system try: logger.info(LogFormatter.subsection("CHECKING EXISTING SUBMISSIONS")) existing_models = await self.get_models() # Call the official provider status check is_valid, error_message = await self.validator.check_official_provider_status( model_data["model_id"], existing_models ) if not is_valid: raise ValueError(error_message) # Check in all statuses (pending, evaluating, finished) for status, models in existing_models.items(): for model in models: if model["name"] == model_data["model_id"] and model["revision"] == model_data["revision"]: error_msg = f"Model {model_data['model_id']} revision {model_data['revision']} is already in the system with status: {status}" logger.error(LogFormatter.error("Submission rejected", error_msg)) raise ValueError(error_msg) logger.info(LogFormatter.success("No existing submission found")) except ValueError: raise except Exception as e: logger.error(LogFormatter.error("Failed to check existing submissions", e)) raise # Check that model on hub and valid valid, error, model_config = await self.validator.is_model_on_hub( model_data["model_id"], model_data["revision"], test_tokenizer=True ) if not valid: logger.error(LogFormatter.error("Model on hub validation failed", error)) raise Exception(error) logger.info(LogFormatter.success("Model on hub validation passed")) # Validate model card valid, error, model_card = await self.validator.check_model_card( model_data["model_id"] ) if not valid: logger.error(LogFormatter.error("Model card validation failed", error)) raise Exception(error) logger.info(LogFormatter.success("Model card validation passed")) # Check size limits model_size, error = await self.validator.get_model_size( model_info, model_data["precision"], model_data["base_model"], revision=model_data["revision"] ) if model_size is None: logger.error(LogFormatter.error("Model size validation failed", error)) raise Exception(error) logger.info(LogFormatter.success(f"Model size validation passed: {model_size:.1f}B")) # Size limits based on precision if model_data["precision"] in ["float16", "bfloat16"] and model_size > 100: error_msg = f"Model too large for {model_data['precision']} (limit: 100B)" logger.error(LogFormatter.error("Size limit exceeded", error_msg)) raise Exception(error_msg) # Chat template validation if requested if model_data["use_chat_template"]: valid, error = await self.validator.check_chat_template( model_data["model_id"], model_data["revision"] ) if not valid: logger.error(LogFormatter.error("Chat template validation failed", error)) raise Exception(error) logger.info(LogFormatter.success("Chat template validation passed")) architectures = model_info.config.get("architectures", "") if architectures: architectures = ";".join(architectures) # Create eval entry eval_entry = { "model": model_data["model_id"], "base_model": model_data["base_model"], "revision": model_info.sha, "precision": model_data["precision"], "params": model_size, "architectures": architectures, "weight_type": model_data["weight_type"], "status": "PENDING", "submitted_time": datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ"), "model_type": model_data["model_type"], "job_id": -1, "job_start_time": None, "use_chat_template": model_data["use_chat_template"], "sender": user_id } logger.info(LogFormatter.subsection("EVALUATION ENTRY")) for line in LogFormatter.tree(eval_entry): logger.info(line) # Upload to HF dataset try: logger.info(LogFormatter.subsection("UPLOADING TO HUGGINGFACE")) logger.info(LogFormatter.info(f"Uploading to {HF_ORGANIZATION}/requests...")) # Construct the path in the dataset org_or_user = model_data["model_id"].split("/")[0] if "/" in model_data["model_id"] else "" model_path = model_data["model_id"].split("/")[-1] relative_path = f"{org_or_user}/{model_path}_eval_request_False_{model_data['precision']}_{model_data['weight_type']}.json" # Create a temporary file with the request with tempfile.NamedTemporaryFile(mode='w', suffix='.json', delete=False) as temp_file: json.dump(eval_entry, temp_file, indent=2) temp_file.flush() temp_path = temp_file.name # Upload file directly self.hf_api.upload_file( path_or_fileobj=temp_path, path_in_repo=relative_path, repo_id=f"{HF_ORGANIZATION}/requests", repo_type="dataset", commit_message=f"Add {model_data['model_id']} to eval queue", token=self.token ) # Clean up temp file os.unlink(temp_path) logger.info(LogFormatter.success("Upload successful")) except Exception as e: logger.error(LogFormatter.error("Upload failed", e)) raise # Add automatic vote try: logger.info(LogFormatter.subsection("AUTOMATIC VOTE")) logger.info(LogFormatter.info(f"Adding upvote for {model_data['model_id']} by {user_id}")) await self.vote_service.add_vote( model_data["model_id"], user_id, "up", { "precision": model_data["precision"], "revision": model_data["revision"] } ) logger.info(LogFormatter.success("Vote recorded successfully")) except Exception as e: logger.error(LogFormatter.error("Failed to record vote", e)) # Don't raise here as the main submission was successful return { "status": "success", "message": "The model was submitted successfully, and the vote has been recorded" } async def get_model_status(self, model_id: str) -> Dict[str, Any]: """Get evaluation status of a model""" logger.info(LogFormatter.info(f"Checking status for model: {model_id}")) eval_path = self.eval_requests_path for user_folder in eval_path.iterdir(): if user_folder.is_dir(): for file in user_folder.glob("*.json"): with open(file, "r") as f: data = json.load(f) if data["model"] == model_id: status = { "status": data["status"], "submitted_time": data["submitted_time"], "job_id": data.get("job_id", -1) } logger.info(LogFormatter.success("Status found")) for line in LogFormatter.tree(status, "Model Status"): logger.info(line) return status logger.warning(LogFormatter.warning(f"No status found for model: {model_id}")) return {"status": "not_found"} async def get_organization_submissions(self, organization: str, days: int = 7) -> List[Dict[str, Any]]: """Get all submissions from a user in the last n days""" try: # Get all models all_models = await self.get_models() current_time = datetime.now(timezone.utc) cutoff_time = current_time - timedelta(days=days) # Filter models by submitter and submission time user_submissions = [] for status, models in all_models.items(): for model in models: # Check if model was submitted by the user if model["submitter"] == organization: # Parse submission time submit_time = datetime.fromisoformat( model["submission_time"].replace("Z", "+00:00") ) # Check if within time window if submit_time > cutoff_time: user_submissions.append({ "name": model["name"], "status": status, "submission_time": model["submission_time"], "precision": model["precision"] }) return sorted( user_submissions, key=lambda x: x["submission_time"], reverse=True ) except Exception as e: logger.error(LogFormatter.error(f"Failed to get submissions for {organization}", e)) raise