Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
performance-improvement (#705)
Browse files- read_evals initial change (705a80cbc41d99ade1f153597b6a9615e9e49a6e)
- improved logging (dadbd309a2806d85f67d888071f2f462a8631573)
- wip improvement (79b2cd565d40f76388770b0703b07431d41efe2a)
- more read_evals.py improvement (9b133aab61075d213546baa519cd392206ea5d05)
- Updated app.py download_dataset function (87e47c26a99aa08208c7aca46842ef9a3f2b078d)
- Fixing WIP (f86eaae89ef990a5d0066fb92946b8d8648adfa4)
- Changes as per comments (c74b7d7ce23fd9f7df60deddf8789e51288d1821)
Co-authored-by: Alina Lozovskaya <[email protected]>
- app.py +30 -10
- pyproject.toml +11 -5
- src/display/utils.py +21 -0
- src/envs.py +1 -1
- src/leaderboard/filter_models.py +1 -3
- src/leaderboard/read_evals.py +134 -94
- src/populate.py +0 -1
- src/tools/collections.py +1 -1
app.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
import os
|
|
|
|
| 2 |
import logging
|
| 3 |
import gradio as gr
|
| 4 |
import pandas as pd
|
|
@@ -49,6 +50,9 @@ from src.tools.collections import update_collections
|
|
| 49 |
from src.tools.plots import create_metric_plot_obj, create_plot_df, create_scores_df
|
| 50 |
|
| 51 |
|
|
|
|
|
|
|
|
|
|
| 52 |
# Start ephemeral Spaces on PRs (see config in README.md)
|
| 53 |
enable_space_ci()
|
| 54 |
|
|
@@ -57,12 +61,24 @@ def restart_space():
|
|
| 57 |
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)
|
| 58 |
|
| 59 |
|
| 60 |
-
def
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
attempt = 0
|
| 63 |
while attempt < max_attempts:
|
| 64 |
try:
|
| 65 |
-
|
| 66 |
snapshot_download(
|
| 67 |
repo_id=repo_id,
|
| 68 |
local_dir=local_dir,
|
|
@@ -71,21 +87,25 @@ def download_dataset(repo_id, local_dir, repo_type="dataset", max_attempts=3):
|
|
| 71 |
etag_timeout=30,
|
| 72 |
max_workers=8,
|
| 73 |
)
|
|
|
|
| 74 |
return
|
| 75 |
except Exception as e:
|
| 76 |
-
|
|
|
|
|
|
|
| 77 |
attempt += 1
|
| 78 |
-
|
| 79 |
-
restart_space()
|
| 80 |
-
|
| 81 |
|
| 82 |
def init_space(full_init: bool = True):
|
| 83 |
"""Initializes the application space, loading only necessary data."""
|
| 84 |
if full_init:
|
| 85 |
# These downloads only occur on full initialization
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
# Always retrieve the leaderboard DataFrame
|
| 91 |
raw_data, original_df = get_leaderboard_df(
|
|
|
|
| 1 |
import os
|
| 2 |
+
import time
|
| 3 |
import logging
|
| 4 |
import gradio as gr
|
| 5 |
import pandas as pd
|
|
|
|
| 50 |
from src.tools.plots import create_metric_plot_obj, create_plot_df, create_scores_df
|
| 51 |
|
| 52 |
|
| 53 |
+
# Configure logging
|
| 54 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 55 |
+
|
| 56 |
# Start ephemeral Spaces on PRs (see config in README.md)
|
| 57 |
enable_space_ci()
|
| 58 |
|
|
|
|
| 61 |
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)
|
| 62 |
|
| 63 |
|
| 64 |
+
def time_diff_wrapper(func):
|
| 65 |
+
def wrapper(*args, **kwargs):
|
| 66 |
+
start_time = time.time()
|
| 67 |
+
result = func(*args, **kwargs)
|
| 68 |
+
end_time = time.time()
|
| 69 |
+
diff = end_time - start_time
|
| 70 |
+
logging.info(f"Time taken for {func.__name__}: {diff} seconds")
|
| 71 |
+
return result
|
| 72 |
+
return wrapper
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
@time_diff_wrapper
|
| 76 |
+
def download_dataset(repo_id, local_dir, repo_type="dataset", max_attempts=3, backoff_factor=1.5):
|
| 77 |
+
"""Download dataset with exponential backoff retries."""
|
| 78 |
attempt = 0
|
| 79 |
while attempt < max_attempts:
|
| 80 |
try:
|
| 81 |
+
logging.info(f"Downloading {repo_id} to {local_dir}")
|
| 82 |
snapshot_download(
|
| 83 |
repo_id=repo_id,
|
| 84 |
local_dir=local_dir,
|
|
|
|
| 87 |
etag_timeout=30,
|
| 88 |
max_workers=8,
|
| 89 |
)
|
| 90 |
+
logging.info("Download successful")
|
| 91 |
return
|
| 92 |
except Exception as e:
|
| 93 |
+
wait_time = backoff_factor ** attempt
|
| 94 |
+
logging.error(f"Error downloading {repo_id}: {e}, retrying in {wait_time}s")
|
| 95 |
+
time.sleep(wait_time)
|
| 96 |
attempt += 1
|
| 97 |
+
raise Exception(f"Failed to download {repo_id} after {max_attempts} attempts")
|
|
|
|
|
|
|
| 98 |
|
| 99 |
def init_space(full_init: bool = True):
|
| 100 |
"""Initializes the application space, loading only necessary data."""
|
| 101 |
if full_init:
|
| 102 |
# These downloads only occur on full initialization
|
| 103 |
+
try:
|
| 104 |
+
download_dataset(QUEUE_REPO, EVAL_REQUESTS_PATH)
|
| 105 |
+
download_dataset(DYNAMIC_INFO_REPO, DYNAMIC_INFO_PATH)
|
| 106 |
+
download_dataset(RESULTS_REPO, EVAL_RESULTS_PATH)
|
| 107 |
+
except Exception:
|
| 108 |
+
restart_space()
|
| 109 |
|
| 110 |
# Always retrieve the leaderboard DataFrame
|
| 111 |
raw_data, original_df = get_leaderboard_df(
|
pyproject.toml
CHANGED
|
@@ -1,9 +1,15 @@
|
|
| 1 |
[tool.ruff]
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
[tool.isort]
|
| 9 |
profile = "black"
|
|
|
|
| 1 |
[tool.ruff]
|
| 2 |
+
line-length = 120
|
| 3 |
+
target-version = "py312"
|
| 4 |
+
include = ["*.py", "*.pyi", "**/pyproject.toml", "*.ipynb"]
|
| 5 |
+
ignore=["I","EM","FBT","TRY003","S101","D101","D102","D103","D104","D105","G004","D107","FA102"]
|
| 6 |
+
fixable=["ALL"]
|
| 7 |
+
select=["ALL"]
|
| 8 |
+
|
| 9 |
+
[tool.ruff.lint]
|
| 10 |
+
select = ["E", "F"]
|
| 11 |
+
fixable = ["ALL"]
|
| 12 |
+
ignore = ["E501"] # line too long (black is taking care of this)
|
| 13 |
|
| 14 |
[tool.isort]
|
| 15 |
profile = "black"
|
src/display/utils.py
CHANGED
|
@@ -1,9 +1,30 @@
|
|
| 1 |
from dataclasses import dataclass, make_dataclass
|
| 2 |
from enum import Enum
|
| 3 |
import json
|
|
|
|
|
|
|
| 4 |
import pandas as pd
|
| 5 |
|
| 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
def load_json_data(file_path):
|
| 8 |
"""Safely load JSON data from a file."""
|
| 9 |
try:
|
|
|
|
| 1 |
from dataclasses import dataclass, make_dataclass
|
| 2 |
from enum import Enum
|
| 3 |
import json
|
| 4 |
+
import logging
|
| 5 |
+
from datetime import datetime
|
| 6 |
import pandas as pd
|
| 7 |
|
| 8 |
|
| 9 |
+
# Configure logging
|
| 10 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 11 |
+
|
| 12 |
+
def parse_datetime(datetime_str):
|
| 13 |
+
formats = [
|
| 14 |
+
"%Y-%m-%dT%H-%M-%S.%f", # Format with dashes
|
| 15 |
+
"%Y-%m-%dT%H:%M:%S.%f", # Standard format with colons
|
| 16 |
+
"%Y-%m-%dT%H %M %S.%f", # Spaces as separator
|
| 17 |
+
]
|
| 18 |
+
|
| 19 |
+
for fmt in formats:
|
| 20 |
+
try:
|
| 21 |
+
return datetime.strptime(datetime_str, fmt)
|
| 22 |
+
except ValueError:
|
| 23 |
+
continue
|
| 24 |
+
# in rare cases set unix start time for files with incorrect time (legacy files)
|
| 25 |
+
logging.error(f"No valid date format found for: {datetime_str}")
|
| 26 |
+
return datetime(1970, 1, 1)
|
| 27 |
+
|
| 28 |
def load_json_data(file_path):
|
| 29 |
"""Safely load JSON data from a file."""
|
| 30 |
try:
|
src/envs.py
CHANGED
|
@@ -26,7 +26,7 @@ if not os.access(HF_HOME, os.W_OK):
|
|
| 26 |
HF_HOME = "."
|
| 27 |
os.environ["HF_HOME"] = HF_HOME
|
| 28 |
else:
|
| 29 |
-
print(
|
| 30 |
|
| 31 |
EVAL_REQUESTS_PATH = os.path.join(HF_HOME, "eval-queue")
|
| 32 |
EVAL_RESULTS_PATH = os.path.join(HF_HOME, "eval-results")
|
|
|
|
| 26 |
HF_HOME = "."
|
| 27 |
os.environ["HF_HOME"] = HF_HOME
|
| 28 |
else:
|
| 29 |
+
print("Write access confirmed for HF_HOME")
|
| 30 |
|
| 31 |
EVAL_REQUESTS_PATH = os.path.join(HF_HOME, "eval-queue")
|
| 32 |
EVAL_RESULTS_PATH = os.path.join(HF_HOME, "eval-results")
|
src/leaderboard/filter_models.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
from src.display.formatting import model_hyperlink
|
| 2 |
from src.display.utils import AutoEvalColumn
|
| 3 |
|
|
|
|
| 4 |
# Models which have been flagged by users as being problematic for a reason or another
|
| 5 |
# (Model name to forum discussion link)
|
| 6 |
FLAGGED_MODELS = {
|
|
@@ -137,10 +138,7 @@ def flag_models(leaderboard_data: list[dict]):
|
|
| 137 |
flag_key = "merged"
|
| 138 |
else:
|
| 139 |
flag_key = model_data[AutoEvalColumn.fullname.name]
|
| 140 |
-
|
| 141 |
-
print(f"model check: {flag_key}")
|
| 142 |
if flag_key in FLAGGED_MODELS:
|
| 143 |
-
print(f"Flagged model: {flag_key}")
|
| 144 |
issue_num = FLAGGED_MODELS[flag_key].split("/")[-1]
|
| 145 |
issue_link = model_hyperlink(
|
| 146 |
FLAGGED_MODELS[flag_key],
|
|
|
|
| 1 |
from src.display.formatting import model_hyperlink
|
| 2 |
from src.display.utils import AutoEvalColumn
|
| 3 |
|
| 4 |
+
|
| 5 |
# Models which have been flagged by users as being problematic for a reason or another
|
| 6 |
# (Model name to forum discussion link)
|
| 7 |
FLAGGED_MODELS = {
|
|
|
|
| 138 |
flag_key = "merged"
|
| 139 |
else:
|
| 140 |
flag_key = model_data[AutoEvalColumn.fullname.name]
|
|
|
|
|
|
|
| 141 |
if flag_key in FLAGGED_MODELS:
|
|
|
|
| 142 |
issue_num = FLAGGED_MODELS[flag_key].split("/")[-1]
|
| 143 |
issue_link = model_hyperlink(
|
| 144 |
FLAGGED_MODELS[flag_key],
|
src/leaderboard/read_evals.py
CHANGED
|
@@ -1,55 +1,58 @@
|
|
| 1 |
-
import glob
|
| 2 |
import json
|
|
|
|
|
|
|
|
|
|
| 3 |
import math
|
| 4 |
-
import os
|
| 5 |
-
from dataclasses import dataclass
|
| 6 |
|
| 7 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
import numpy as np
|
| 9 |
|
| 10 |
from src.display.formatting import make_clickable_model
|
| 11 |
-
from src.display.utils import AutoEvalColumn, ModelType, Precision, Tasks, WeightType
|
| 12 |
|
|
|
|
|
|
|
| 13 |
|
| 14 |
@dataclass
|
| 15 |
class EvalResult:
|
| 16 |
# Also see src.display.utils.AutoEvalColumn for what will be displayed.
|
| 17 |
-
eval_name: str
|
| 18 |
-
full_model: str
|
| 19 |
-
org: str
|
| 20 |
model: str
|
| 21 |
-
revision: str
|
| 22 |
-
results:
|
| 23 |
precision: Precision = Precision.Unknown
|
| 24 |
-
model_type: ModelType = ModelType.Unknown
|
| 25 |
-
weight_type: WeightType = WeightType.Original
|
| 26 |
-
architecture: str = "Unknown"
|
| 27 |
license: str = "?"
|
| 28 |
likes: int = 0
|
| 29 |
num_params: int = 0
|
| 30 |
-
date: str = ""
|
| 31 |
still_on_hub: bool = True
|
| 32 |
is_merge: bool = False
|
| 33 |
flagged: bool = False
|
| 34 |
status: str = "FINISHED"
|
| 35 |
-
tags
|
| 36 |
-
|
|
|
|
|
|
|
| 37 |
@classmethod
|
| 38 |
-
def init_from_json_file(
|
| 39 |
-
|
| 40 |
-
with open(json_filepath) as fp:
|
| 41 |
data = json.load(fp)
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
# Get model and org
|
| 50 |
-
org_and_model = config.get("model_name")
|
| 51 |
-
org_and_model = org_and_model.split("/", 1)
|
| 52 |
-
|
| 53 |
if len(org_and_model) == 1:
|
| 54 |
org = None
|
| 55 |
model = org_and_model[0]
|
|
@@ -60,25 +63,53 @@ class EvalResult:
|
|
| 60 |
result_key = f"{org}_{model}_{precision.value.name}"
|
| 61 |
full_model = "/".join(org_and_model)
|
| 62 |
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
results = {}
|
| 65 |
for task in Tasks:
|
| 66 |
task = task.value
|
| 67 |
# We skip old mmlu entries
|
| 68 |
-
wrong_mmlu_version = False
|
| 69 |
if task.benchmark == "hendrycksTest":
|
| 70 |
for mmlu_k in ["harness|hendrycksTest-abstract_algebra|5", "hendrycksTest-abstract_algebra"]:
|
| 71 |
if mmlu_k in data["versions"] and data["versions"][mmlu_k] == 0:
|
| 72 |
-
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
|
| 83 |
# We average all scores of a given metric (mostly for mmlu)
|
| 84 |
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark in k])
|
|
@@ -87,40 +118,54 @@ class EvalResult:
|
|
| 87 |
|
| 88 |
mean_acc = np.mean(accs) * 100.0
|
| 89 |
results[task.benchmark] = mean_acc
|
|
|
|
|
|
|
| 90 |
|
| 91 |
-
return self(
|
| 92 |
-
eval_name=result_key,
|
| 93 |
-
full_model=full_model,
|
| 94 |
-
org=org,
|
| 95 |
-
model=model,
|
| 96 |
-
results=results,
|
| 97 |
-
precision=precision,
|
| 98 |
-
revision=config.get("model_sha", ""),
|
| 99 |
-
)
|
| 100 |
|
| 101 |
def update_with_request_file(self, requests_path):
|
| 102 |
-
"""Finds the relevant request file for the current model and updates info with it"""
|
| 103 |
-
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
|
| 104 |
-
|
| 105 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
with open(request_file, "r") as f:
|
| 107 |
request = json.load(f)
|
|
|
|
| 108 |
self.model_type = ModelType.from_str(request.get("model_type", "Unknown"))
|
| 109 |
self.weight_type = WeightType[request.get("weight_type", "Original")]
|
| 110 |
-
self.num_params = request.get("params", 0)
|
| 111 |
self.date = request.get("submitted_time", "")
|
| 112 |
self.architecture = request.get("architectures", "Unknown")
|
| 113 |
self.status = request.get("status", "FAILED")
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
self.status = "FAILED"
|
| 116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
def update_with_dynamic_file_dict(self, file_dict):
|
|
|
|
|
|
|
| 119 |
self.license = file_dict.get("license", "?")
|
| 120 |
-
self.likes = file_dict.get("likes", 0)
|
| 121 |
-
self.still_on_hub = file_dict
|
| 122 |
self.tags = file_dict.get("tags", [])
|
| 123 |
-
|
|
|
|
|
|
|
|
|
|
| 124 |
|
| 125 |
def to_dict(self):
|
| 126 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
|
@@ -149,55 +194,48 @@ class EvalResult:
|
|
| 149 |
data_dict[task.value.col_name] = self.results[task.value.benchmark]
|
| 150 |
|
| 151 |
return data_dict
|
| 152 |
-
|
| 153 |
|
| 154 |
def get_request_file_for_model(requests_path, model_name, precision):
|
| 155 |
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
request_files =
|
| 161 |
-
|
| 162 |
-
#
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
|
|
|
|
|
|
| 167 |
req_content = json.load(f)
|
| 168 |
-
if req_content["status"]
|
| 169 |
-
request_file =
|
|
|
|
|
|
|
| 170 |
return request_file
|
| 171 |
|
| 172 |
|
| 173 |
def get_raw_eval_results(results_path: str, requests_path: str, dynamic_path: str) -> list[EvalResult]:
|
| 174 |
"""From the path of the results folder root, extract all needed info for results"""
|
| 175 |
-
model_result_filepaths = []
|
| 176 |
-
|
| 177 |
-
for root, _, files in os.walk(results_path):
|
| 178 |
-
# We should only have json files in model results
|
| 179 |
-
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|
| 180 |
-
continue
|
| 181 |
-
|
| 182 |
-
# Sort the files by date
|
| 183 |
-
try:
|
| 184 |
-
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
|
| 185 |
-
except dateutil.parser._parser.ParserError:
|
| 186 |
-
files = [files[-1]]
|
| 187 |
-
|
| 188 |
-
for file in files:
|
| 189 |
-
model_result_filepaths.append(os.path.join(root, file))
|
| 190 |
-
|
| 191 |
with open(dynamic_path) as f:
|
| 192 |
dynamic_data = json.load(f)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
|
| 194 |
eval_results = {}
|
| 195 |
-
for
|
|
|
|
| 196 |
# Creation of result
|
| 197 |
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
if eval_result.full_model in dynamic_data:
|
| 202 |
eval_result.update_with_dynamic_file_dict(dynamic_data[eval_result.full_model])
|
| 203 |
# Hardcoding because of gating problem
|
|
@@ -212,12 +250,14 @@ def get_raw_eval_results(results_path: str, requests_path: str, dynamic_path: st
|
|
| 212 |
eval_results[eval_name] = eval_result
|
| 213 |
|
| 214 |
results = []
|
| 215 |
-
for v in eval_results.
|
| 216 |
try:
|
| 217 |
if v.status == "FINISHED":
|
| 218 |
v.to_dict() # we test if the dict version is complete
|
| 219 |
results.append(v)
|
| 220 |
-
except KeyError
|
|
|
|
| 221 |
continue
|
| 222 |
|
| 223 |
return results
|
|
|
|
|
|
|
|
|
| 1 |
import json
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
from json import JSONDecodeError
|
| 4 |
+
import logging
|
| 5 |
import math
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
from dataclasses import dataclass, field
|
| 8 |
+
from typing import Optional, Dict, List
|
| 9 |
+
|
| 10 |
+
from tqdm import tqdm
|
| 11 |
+
from tqdm.contrib.logging import logging_redirect_tqdm
|
| 12 |
+
|
| 13 |
import numpy as np
|
| 14 |
|
| 15 |
from src.display.formatting import make_clickable_model
|
| 16 |
+
from src.display.utils import AutoEvalColumn, ModelType, Precision, Tasks, WeightType, parse_datetime
|
| 17 |
|
| 18 |
+
# Configure logging
|
| 19 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 20 |
|
| 21 |
@dataclass
|
| 22 |
class EvalResult:
|
| 23 |
# Also see src.display.utils.AutoEvalColumn for what will be displayed.
|
| 24 |
+
eval_name: str # org_model_precision (uid)
|
| 25 |
+
full_model: str # org/model (path on hub)
|
| 26 |
+
org: Optional[str]
|
| 27 |
model: str
|
| 28 |
+
revision: str # commit hash, "" if main
|
| 29 |
+
results: Dict[str, float]
|
| 30 |
precision: Precision = Precision.Unknown
|
| 31 |
+
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
| 32 |
+
weight_type: WeightType = WeightType.Original
|
| 33 |
+
architecture: str = "Unknown" # From config file
|
| 34 |
license: str = "?"
|
| 35 |
likes: int = 0
|
| 36 |
num_params: int = 0
|
| 37 |
+
date: str = "" # submission date of request file
|
| 38 |
still_on_hub: bool = True
|
| 39 |
is_merge: bool = False
|
| 40 |
flagged: bool = False
|
| 41 |
status: str = "FINISHED"
|
| 42 |
+
# List of tags, initialized to a new empty list for each instance to avoid the pitfalls of mutable default arguments.
|
| 43 |
+
tags: List[str] = field(default_factory=list)
|
| 44 |
+
|
| 45 |
+
|
| 46 |
@classmethod
|
| 47 |
+
def init_from_json_file(cls, json_filepath: str) -> 'EvalResult':
|
| 48 |
+
with open(json_filepath, 'r') as fp:
|
|
|
|
| 49 |
data = json.load(fp)
|
| 50 |
|
| 51 |
+
config = data.get("config_general", {})
|
| 52 |
+
precision = Precision.from_str(config.get("model_dtype", "unknown"))
|
| 53 |
+
org_and_model = config.get("model_name", "").split("/", 1)
|
| 54 |
+
org = org_and_model[0] if len(org_and_model) > 1 else None
|
| 55 |
+
model = org_and_model[-1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
if len(org_and_model) == 1:
|
| 57 |
org = None
|
| 58 |
model = org_and_model[0]
|
|
|
|
| 63 |
result_key = f"{org}_{model}_{precision.value.name}"
|
| 64 |
full_model = "/".join(org_and_model)
|
| 65 |
|
| 66 |
+
results = cls.extract_results(data) # Properly call the method to extract results
|
| 67 |
+
|
| 68 |
+
return cls(
|
| 69 |
+
eval_name=result_key,
|
| 70 |
+
full_model=full_model,
|
| 71 |
+
org=org,
|
| 72 |
+
model=model,
|
| 73 |
+
results=results,
|
| 74 |
+
precision=precision,
|
| 75 |
+
revision=config.get("model_sha", "")
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
@staticmethod
|
| 79 |
+
def extract_results(data: Dict) -> Dict[str, float]:
|
| 80 |
+
"""
|
| 81 |
+
Extract and process benchmark results from a given dict.
|
| 82 |
+
|
| 83 |
+
Parameters:
|
| 84 |
+
- data (Dict): A dictionary containing benchmark data. This dictionary must
|
| 85 |
+
include 'versions' and 'results' keys with respective sub-data.
|
| 86 |
+
|
| 87 |
+
Returns:
|
| 88 |
+
- Dict[str, float]: A dictionary where keys are benchmark names and values
|
| 89 |
+
are the processed average scores as percentages.
|
| 90 |
+
|
| 91 |
+
Notes:
|
| 92 |
+
- The method specifically checks for certain benchmark names to skip outdated entries.
|
| 93 |
+
- Handles NaN values by setting the corresponding benchmark result to 0.0.
|
| 94 |
+
- Averages scores across metrics for benchmarks found in the data, in a percentage format.
|
| 95 |
+
"""
|
| 96 |
results = {}
|
| 97 |
for task in Tasks:
|
| 98 |
task = task.value
|
| 99 |
# We skip old mmlu entries
|
|
|
|
| 100 |
if task.benchmark == "hendrycksTest":
|
| 101 |
for mmlu_k in ["harness|hendrycksTest-abstract_algebra|5", "hendrycksTest-abstract_algebra"]:
|
| 102 |
if mmlu_k in data["versions"] and data["versions"][mmlu_k] == 0:
|
| 103 |
+
continue
|
| 104 |
|
| 105 |
+
# Some benchamrk values are NaNs, mostly truthfulQA
|
| 106 |
+
# Would be more optimal (without the whole dict itertion) if benchmark name was same as key in results
|
| 107 |
+
# e.g. not harness|truthfulqa:mc|0 but truthfulqa:mc
|
| 108 |
+
for k, v in data["results"].items():
|
| 109 |
+
if task.benchmark in k:
|
| 110 |
+
if math.isnan(float(v[task.metric])):
|
| 111 |
+
results[task.benchmark] = 0.0
|
| 112 |
+
continue
|
| 113 |
|
| 114 |
# We average all scores of a given metric (mostly for mmlu)
|
| 115 |
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark in k])
|
|
|
|
| 118 |
|
| 119 |
mean_acc = np.mean(accs) * 100.0
|
| 120 |
results[task.benchmark] = mean_acc
|
| 121 |
+
|
| 122 |
+
return results
|
| 123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
|
| 125 |
def update_with_request_file(self, requests_path):
|
| 126 |
+
"""Finds the relevant request file for the current model and updates info with it."""
|
|
|
|
|
|
|
| 127 |
try:
|
| 128 |
+
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
|
| 129 |
+
if request_file is None:
|
| 130 |
+
logging.warning(f"No request file for {self.org}/{self.model}")
|
| 131 |
+
self.status = "FAILED"
|
| 132 |
+
return
|
| 133 |
+
|
| 134 |
with open(request_file, "r") as f:
|
| 135 |
request = json.load(f)
|
| 136 |
+
|
| 137 |
self.model_type = ModelType.from_str(request.get("model_type", "Unknown"))
|
| 138 |
self.weight_type = WeightType[request.get("weight_type", "Original")]
|
| 139 |
+
self.num_params = int(request.get("params", 0)) # Ensuring type safety
|
| 140 |
self.date = request.get("submitted_time", "")
|
| 141 |
self.architecture = request.get("architectures", "Unknown")
|
| 142 |
self.status = request.get("status", "FAILED")
|
| 143 |
+
|
| 144 |
+
except FileNotFoundError:
|
| 145 |
+
self.status = "FAILED"
|
| 146 |
+
logging.error(f"Request file: {request_file} not found for {self.org}/{self.model}")
|
| 147 |
+
except JSONDecodeError:
|
| 148 |
+
self.status = "FAILED"
|
| 149 |
+
logging.error(f"Error decoding JSON from the request file for {self.org}/{self.model}")
|
| 150 |
+
except KeyError as e:
|
| 151 |
self.status = "FAILED"
|
| 152 |
+
logging.error(f"Key error {e} in processing request file for {self.org}/{self.model}")
|
| 153 |
+
except Exception as e: # Catch-all for any other unexpected exceptions
|
| 154 |
+
self.status = "FAILED"
|
| 155 |
+
logging.error(f"Unexpected error {e} for {self.org}/{self.model}")
|
| 156 |
+
|
| 157 |
|
| 158 |
def update_with_dynamic_file_dict(self, file_dict):
|
| 159 |
+
"""Update object attributes based on the provided dictionary, with error handling for missing keys and type validation."""
|
| 160 |
+
# Default values set for optional or potentially missing keys.
|
| 161 |
self.license = file_dict.get("license", "?")
|
| 162 |
+
self.likes = int(file_dict.get("likes", 0)) # Ensure likes is treated as an integer
|
| 163 |
+
self.still_on_hub = file_dict.get("still_on_hub", False) # Default to False if key is missing
|
| 164 |
self.tags = file_dict.get("tags", [])
|
| 165 |
+
|
| 166 |
+
# Calculate `flagged` only if 'tags' is not empty and avoid calculating each time
|
| 167 |
+
self.flagged = "flagged" in self.tags
|
| 168 |
+
|
| 169 |
|
| 170 |
def to_dict(self):
|
| 171 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
|
|
|
| 194 |
data_dict[task.value.col_name] = self.results[task.value.benchmark]
|
| 195 |
|
| 196 |
return data_dict
|
| 197 |
+
|
| 198 |
|
| 199 |
def get_request_file_for_model(requests_path, model_name, precision):
|
| 200 |
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
|
| 201 |
+
requests_path = Path(requests_path)
|
| 202 |
+
pattern = f"{model_name}_eval_request_*.json"
|
| 203 |
+
|
| 204 |
+
# Using pathlib to find files matching the pattern
|
| 205 |
+
request_files = list(requests_path.glob(pattern))
|
| 206 |
+
|
| 207 |
+
# Sort the files by name in descending order to mimic 'reverse=True'
|
| 208 |
+
request_files.sort(reverse=True)
|
| 209 |
+
|
| 210 |
+
# Select the correct request file based on 'status' and 'precision'
|
| 211 |
+
request_file = None
|
| 212 |
+
for request_file in request_files:
|
| 213 |
+
with request_file.open("r") as f:
|
| 214 |
req_content = json.load(f)
|
| 215 |
+
if req_content["status"] == "FINISHED" and req_content["precision"] == precision.split(".")[-1]:
|
| 216 |
+
request_file = str(request_file)
|
| 217 |
+
|
| 218 |
+
# Return empty string if no file found that matches criteria
|
| 219 |
return request_file
|
| 220 |
|
| 221 |
|
| 222 |
def get_raw_eval_results(results_path: str, requests_path: str, dynamic_path: str) -> list[EvalResult]:
|
| 223 |
"""From the path of the results folder root, extract all needed info for results"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
with open(dynamic_path) as f:
|
| 225 |
dynamic_data = json.load(f)
|
| 226 |
+
|
| 227 |
+
results_path = Path(results_path)
|
| 228 |
+
model_files = list(results_path.rglob('results_*.json'))
|
| 229 |
+
model_files.sort(key=lambda file: parse_datetime(file.stem.removeprefix("results_")))
|
| 230 |
|
| 231 |
eval_results = {}
|
| 232 |
+
# Wrap model_files iteration with tqdm for progress display
|
| 233 |
+
for model_result_filepath in tqdm(model_files, desc="Processing model files"):
|
| 234 |
# Creation of result
|
| 235 |
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
| 236 |
+
with logging_redirect_tqdm():
|
| 237 |
+
eval_result.update_with_request_file(requests_path)
|
| 238 |
+
|
| 239 |
if eval_result.full_model in dynamic_data:
|
| 240 |
eval_result.update_with_dynamic_file_dict(dynamic_data[eval_result.full_model])
|
| 241 |
# Hardcoding because of gating problem
|
|
|
|
| 250 |
eval_results[eval_name] = eval_result
|
| 251 |
|
| 252 |
results = []
|
| 253 |
+
for k, v in eval_results.items():
|
| 254 |
try:
|
| 255 |
if v.status == "FINISHED":
|
| 256 |
v.to_dict() # we test if the dict version is complete
|
| 257 |
results.append(v)
|
| 258 |
+
except KeyError as e:
|
| 259 |
+
logging.error(f"Error while checking model {k} {v.date} json, no key: {e}") # not all eval values present
|
| 260 |
continue
|
| 261 |
|
| 262 |
return results
|
| 263 |
+
|
src/populate.py
CHANGED
|
@@ -52,4 +52,3 @@ def get_leaderboard_df(results_path, requests_path, dynamic_path, cols, benchmar
|
|
| 52 |
df = df[cols].round(decimals=2)
|
| 53 |
df = df[has_no_nan_values(df, benchmark_cols)]
|
| 54 |
return raw_data, df
|
| 55 |
-
|
|
|
|
| 52 |
df = df[cols].round(decimals=2)
|
| 53 |
df = df[has_no_nan_values(df, benchmark_cols)]
|
| 54 |
return raw_data, df
|
|
|
src/tools/collections.py
CHANGED
|
@@ -73,4 +73,4 @@ def update_collections(df: DataFrame):
|
|
| 73 |
try:
|
| 74 |
delete_collection_item(collection_slug=PATH_TO_COLLECTION, item_object_id=item_id, token=H4_TOKEN)
|
| 75 |
except HfHubHTTPError:
|
| 76 |
-
continue
|
|
|
|
| 73 |
try:
|
| 74 |
delete_collection_item(collection_slug=PATH_TO_COLLECTION, item_object_id=item_id, token=H4_TOKEN)
|
| 75 |
except HfHubHTTPError:
|
| 76 |
+
continue
|