import gradio as gr import numpy as np import random import torch from diffusers import DiffusionPipeline from torch import autocast # Usando autocast para otimizar operações em float16 # Verifica se a GPU está disponível device = "cuda" if torch.cuda.is_available() else "cpu" model_repo_id = "stabilityai/sdxl-turbo" # Modelo otimizado para velocidade # Usando float16 para otimizar a execução na GPU torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 # Carregando o modelo com otimizações pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype).to(device) # Max seed MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 512 # Dimensões menores para acelerar # Função de inferência otimizada def infer( prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True), ): # Randomiza a semente, se necessário if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator(device).manual_seed(seed) # Usando autocast para acelerar o cálculo com float16 em GPUs with autocast("cuda"): # Geração da imagem com um número reduzido de passos (para acelerar) image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, ).images[0] return image, seed # Exemplos para o Gradio examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 2k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] css = """ #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(" # Text-to-Image Gradio Template") with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0, variant="primary") result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=False, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, # Dimensões reduzidas para otimizar ) height = gr.Slider( label="Height", minimum=576, maximum=MAX_IMAGE_SIZE, step=32, value=1024, # Dimensões reduzidas para otimizar ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=7.5, # Valor adequado para controle ) num_inference_steps = gr.Slider( label="Inference steps", minimum=1, maximum=30, # Menos passos para otimizar a velocidade step=1, value=20, # Um valor equilibrado ) gr.Examples(examples=examples, inputs=[prompt]) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, ], outputs=[result, seed], ) if __name__ == "__main__": demo.launch()