onnew commited on
Commit
d8e57d4
·
verified ·
1 Parent(s): b96b242

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +109 -136
app.py CHANGED
@@ -1,139 +1,112 @@
1
- import gradio as gr
2
- import numpy as np
3
- import random
4
- import spaces
5
- import torch
6
- from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
7
- from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
8
- from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
9
-
10
- dtype = torch.bfloat16
11
- device = "cuda" if torch.cuda.is_available() else "cpu"
12
-
13
- taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
14
- good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
15
- pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
16
- torch.cuda.empty_cache()
17
-
18
- MAX_SEED = np.iinfo(np.int32).max
19
- MAX_IMAGE_SIZE = 2048
20
-
21
- pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
22
-
23
- @spaces.GPU(duration=75)
24
- def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
25
- if randomize_seed:
26
- seed = random.randint(0, MAX_SEED)
27
- generator = torch.Generator().manual_seed(seed)
28
-
29
- for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
30
- prompt=prompt,
31
- guidance_scale=guidance_scale,
32
- num_inference_steps=num_inference_steps,
33
- width=width,
34
- height=height,
35
- generator=generator,
36
- output_type="pil",
37
- good_vae=good_vae,
38
- ):
39
- yield img, seed
40
-
41
- examples = [
42
- "a tiny astronaut hatching from an egg on the moon",
43
- "a cat holding a sign that says hello world",
44
- "an anime illustration of a wiener schnitzel",
45
- ]
46
-
47
- css="""
48
- #col-container {
49
- margin: 0 auto;
50
- max-width: 520px;
51
  }
52
- """
53
-
54
- with gr.Blocks(css=css) as demo:
55
-
56
- with gr.Column(elem_id="col-container"):
57
- gr.Markdown(f"""# FLUX.1 [dev]
58
- 12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
59
- [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
60
- """)
61
-
62
- with gr.Row():
63
-
64
- prompt = gr.Text(
65
- label="Prompt",
66
- show_label=False,
67
- max_lines=1,
68
- placeholder="Enter your prompt",
69
- container=False,
70
- )
71
-
72
- run_button = gr.Button("Run", scale=0)
73
-
74
- result = gr.Image(label="Result", show_label=False)
75
-
76
- with gr.Accordion("Advanced Settings", open=False):
77
-
78
- seed = gr.Slider(
79
- label="Seed",
80
- minimum=0,
81
- maximum=MAX_SEED,
82
- step=1,
83
- value=0,
84
- )
85
-
86
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
87
-
88
- with gr.Row():
89
-
90
- width = gr.Slider(
91
- label="Width",
92
- minimum=256,
93
- maximum=MAX_IMAGE_SIZE,
94
- step=32,
95
- value=1024,
96
- )
97
-
98
- height = gr.Slider(
99
- label="Height",
100
- minimum=256,
101
- maximum=MAX_IMAGE_SIZE,
102
- step=32,
103
- value=1024,
104
- )
105
-
106
- with gr.Row():
107
-
108
- guidance_scale = gr.Slider(
109
- label="Guidance Scale",
110
- minimum=1,
111
- maximum=15,
112
- step=0.1,
113
- value=3.5,
114
- )
115
-
116
- num_inference_steps = gr.Slider(
117
- label="Number of inference steps",
118
- minimum=1,
119
- maximum=50,
120
- step=1,
121
- value=28,
122
- )
123
-
124
- gr.Examples(
125
- examples = examples,
126
- fn = infer,
127
- inputs = [prompt],
128
- outputs = [result, seed],
129
- cache_examples="lazy"
130
- )
131
-
132
- gr.on(
133
- triggers=[run_button.click, prompt.submit],
134
- fn = infer,
135
- inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
136
- outputs = [result, seed]
137
  )
138
 
139
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from flask import Flask, request, jsonify
2
+ import requests
3
+ import base64
4
+
5
+ app = Flask(__name__)
6
+
7
+ # URL do modelo Hugging Face e seu token de API
8
+ HUGGINGFACE_API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-2"
9
+ HUGGINGFACE_API_TOKEN = "SEU_TOKEN_AQUI"
10
+
11
+ headers = {
12
+ "Authorization": f"Bearer {HUGGINGFACE_API_TOKEN}"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  }
14
+
15
+ @app.route("/")
16
+ def home():
17
+ return '''
18
+ <!DOCTYPE html>
19
+ <html>
20
+ <head>
21
+ <title>Gerador de Imagens</title>
22
+ </head>
23
+ <body>
24
+ <h1>Gerador de Imagens com Texto</h1>
25
+ <form action="/generate" method="post">
26
+ <label for="prompt">Descrição da imagem:</label><br>
27
+ <input type="text" id="prompt" name="prompt" required><br><br>
28
+
29
+ <h3>Configurações Avançadas</h3>
30
+ <label for="seed">Seed:</label>
31
+ <input type="number" id="seed" name="seed" value="0"><br><br>
32
+
33
+ <label for="randomize_seed">Randomizar Seed:</label>
34
+ <input type="checkbox" id="randomize_seed" name="randomize_seed" checked><br><br>
35
+
36
+ <label for="width">Largura (Width):</label>
37
+ <input type="number" id="width" name="width" value="1024"><br><br>
38
+
39
+ <label for="height">Altura (Height):</label>
40
+ <input type="number" id="height" name="height" value="1024"><br><br>
41
+
42
+ <label for="guidance_scale">Escala de Orientação (Guidance Scale):</label>
43
+ <input type="number" id="guidance_scale" name="guidance_scale" step="0.1" value="7.5"><br><br>
44
+
45
+ <label for="steps">Número de Etapas (Inference Steps):</label>
46
+ <input type="number" id="steps" name="steps" value="50"><br><br>
47
+
48
+ <button type="submit">Gerar Imagem</button>
49
+ </form>
50
+ </body>
51
+ </html>
52
+ '''
53
+
54
+ @app.route("/generate", methods=["POST"])
55
+ def generate_image():
56
+ # Obter os parâmetros enviados pelo formulário
57
+ prompt = request.form.get("prompt")
58
+ seed = int(request.form.get("seed", 0))
59
+ randomize_seed = "randomize_seed" in request.form
60
+ width = int(request.form.get("width", 1024))
61
+ height = int(request.form.get("height", 1024))
62
+ guidance_scale = float(request.form.get("guidance_scale", 7.5))
63
+ steps = int(request.form.get("steps", 50))
64
+
65
+ # Ajustar o seed se for para randomizar
66
+ if randomize_seed:
67
+ import random
68
+ seed = random.randint(0, 999999)
69
+
70
+ # Requisição para o modelo Hugging Face
71
+ payload = {
72
+ "inputs": prompt,
73
+ "parameters": {
74
+ "width": width,
75
+ "height": height,
76
+ "guidance_scale": guidance_scale,
77
+ "num_inference_steps": steps,
78
+ "seed": seed
79
+ }
80
+ }
81
+ response = requests.post(
82
+ HUGGINGFACE_API_URL,
83
+ headers=headers,
84
+ json=payload
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85
  )
86
 
87
+ if response.status_code != 200:
88
+ return jsonify({"error": "Erro ao gerar a imagem", "details": response.text}), 500
89
+
90
+ # Converte a resposta para Base64
91
+ image_data = response.content
92
+ image_base64 = base64.b64encode(image_data).decode("utf-8")
93
+
94
+ # Retorna a imagem gerada
95
+ return f'''
96
+ <!DOCTYPE html>
97
+ <html>
98
+ <head>
99
+ <title>Imagem Gerada</title>
100
+ </head>
101
+ <body>
102
+ <h1>Imagem Gerada</h1>
103
+ <img src="data:image/png;base64,{image_base64}" alt="Generated Image">
104
+ <br><br>
105
+ <a href="/">Voltar</a>
106
+ </body>
107
+ </html>
108
+ '''
109
+
110
+ if __name__ == "__main__":
111
+ from waitress import serve
112
+ serve(app, host="0.0.0.0", port=8080)