Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,44 +1,143 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
img = Image.new("RGB", (512, 512), color=(255, 255, 255))
|
9 |
-
draw = ImageDraw.Draw(img)
|
10 |
-
|
11 |
-
# Definir gradiente de amarelo para rosa
|
12 |
-
gradient = np.zeros((512, 512, 3), dtype=np.uint8)
|
13 |
-
for i in range(512):
|
14 |
-
for j in range(512):
|
15 |
-
r = int((i / 512) * 255) # Gradiente de vermelho
|
16 |
-
g = int((i / 512) * 255) # Gradiente de verde
|
17 |
-
b = int(255 - (i / 512) * 255) # Gradiente de azul
|
18 |
-
gradient[i, j] = [r, g, b]
|
19 |
-
|
20 |
-
# Converter o gradiente para uma imagem PIL
|
21 |
-
gradient_img = Image.fromarray(gradient)
|
22 |
-
img.paste(gradient_img, (0, 0))
|
23 |
-
|
24 |
-
# Adicionar o título na imagem
|
25 |
-
font = ImageFont.load_default()
|
26 |
-
draw.text((20, 20), "FLUX.1 [dev] 🖥️", font=font, fill=(0, 0, 0))
|
27 |
-
|
28 |
-
return img
|
29 |
-
|
30 |
-
# Definir a interface Gradio
|
31 |
-
with gr.Blocks() as demo:
|
32 |
-
with gr.Row():
|
33 |
-
gr.Markdown("### FLUX.1 [dev] 🖥️")
|
34 |
-
gr.Markdown(
|
35 |
-
"This is a Gradio app using FLUX.1. The app generates an image with a yellow to pink gradient."
|
36 |
-
)
|
37 |
-
result = gr.Image(label="Generated Image")
|
38 |
|
39 |
-
|
|
|
|
|
40 |
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
+
import random
|
4 |
+
import torch
|
5 |
+
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
|
6 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
7 |
+
from live_preview_helpers import flux_pipe_call_that_returns_an_iterable_of_images
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
# Definindo variáveis e carregando modelos
|
10 |
+
dtype = torch.float16 # Usando float16 para melhorar a performance
|
11 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
|
13 |
+
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
14 |
+
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
|
15 |
+
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
|
16 |
+
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
17 |
+
|
18 |
+
torch.cuda.empty_cache()
|
19 |
+
|
20 |
+
MAX_SEED = np.iinfo(np.int32).max
|
21 |
+
MAX_IMAGE_SIZE = 2048
|
22 |
+
|
23 |
+
# Função de inferência otimizada
|
24 |
+
@torch.inference_mode() # Desabilitando cálculo de gradientes para acelerar a inferência
|
25 |
+
@spaces.GPU(duration=75)
|
26 |
+
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
27 |
+
if randomize_seed:
|
28 |
+
seed = random.randint(0, MAX_SEED)
|
29 |
+
|
30 |
+
generator = torch.Generator(device).manual_seed(seed)
|
31 |
+
|
32 |
+
# Usando autograd em precisão reduzida (float16) para acelerar a inferência
|
33 |
+
with torch.autocast("cuda", dtype=torch.float16):
|
34 |
+
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
35 |
+
prompt=prompt,
|
36 |
+
guidance_scale=guidance_scale,
|
37 |
+
num_inference_steps=num_inference_steps,
|
38 |
+
width=width,
|
39 |
+
height=height,
|
40 |
+
generator=generator,
|
41 |
+
output_type="pil",
|
42 |
+
good_vae=good_vae,
|
43 |
+
):
|
44 |
+
yield img, seed
|
45 |
+
|
46 |
+
torch.cuda.empty_cache() # Limpar a memória após a inferência para liberar recursos
|
47 |
|
48 |
+
# Exemplos
|
49 |
+
examples = [
|
50 |
+
"a tiny astronaut hatching from an egg on the moon",
|
51 |
+
"a cat holding a sign that says hello world",
|
52 |
+
"an anime illustration of a wiener schnitzel",
|
53 |
+
]
|
54 |
|
55 |
+
css = """
|
56 |
+
#col-container {
|
57 |
+
margin: 0 auto;
|
58 |
+
max-width: 520px;
|
59 |
+
}
|
60 |
+
"""
|
61 |
+
|
62 |
+
# Interface Gradio
|
63 |
+
with gr.Blocks(css=css) as demo:
|
64 |
+
with gr.Column(elem_id="col-container"):
|
65 |
+
gr.Markdown(f"""# FLUX.1 [dev]
|
66 |
+
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
|
67 |
+
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
|
68 |
+
""")
|
69 |
+
|
70 |
+
with gr.Row():
|
71 |
+
prompt = gr.Text(
|
72 |
+
label="Prompt",
|
73 |
+
show_label=False,
|
74 |
+
max_lines=1,
|
75 |
+
placeholder="Enter your prompt",
|
76 |
+
container=False,
|
77 |
+
)
|
78 |
+
run_button = gr.Button("Run", scale=0)
|
79 |
+
|
80 |
+
result = gr.Image(label="Result", show_label=False)
|
81 |
+
|
82 |
+
with gr.Accordion("Advanced Settings", open=False):
|
83 |
+
seed = gr.Slider(
|
84 |
+
label="Seed",
|
85 |
+
minimum=0,
|
86 |
+
maximum=MAX_SEED,
|
87 |
+
step=1,
|
88 |
+
value=0,
|
89 |
+
)
|
90 |
+
|
91 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
92 |
+
|
93 |
+
with gr.Row():
|
94 |
+
width = gr.Slider(
|
95 |
+
label="Width",
|
96 |
+
minimum=256,
|
97 |
+
maximum=MAX_IMAGE_SIZE,
|
98 |
+
step=32,
|
99 |
+
value=1024,
|
100 |
+
)
|
101 |
+
|
102 |
+
height = gr.Slider(
|
103 |
+
label="Height",
|
104 |
+
minimum=256,
|
105 |
+
maximum=MAX_IMAGE_SIZE,
|
106 |
+
step=32,
|
107 |
+
value=1024,
|
108 |
+
)
|
109 |
+
|
110 |
+
with gr.Row():
|
111 |
+
guidance_scale = gr.Slider(
|
112 |
+
label="Guidance Scale",
|
113 |
+
minimum=1,
|
114 |
+
maximum=15,
|
115 |
+
step=0.1,
|
116 |
+
value=3.5,
|
117 |
+
)
|
118 |
+
|
119 |
+
num_inference_steps = gr.Slider(
|
120 |
+
label="Number of inference steps",
|
121 |
+
minimum=1,
|
122 |
+
maximum=50,
|
123 |
+
step=1,
|
124 |
+
value=28,
|
125 |
+
)
|
126 |
+
|
127 |
+
gr.Examples(
|
128 |
+
examples=examples,
|
129 |
+
fn=infer,
|
130 |
+
inputs=[prompt],
|
131 |
+
outputs=[result, seed],
|
132 |
+
cache_examples="lazy"
|
133 |
+
)
|
134 |
+
|
135 |
+
gr.on(
|
136 |
+
triggers=[run_button.click, prompt.submit],
|
137 |
+
fn=infer,
|
138 |
+
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
139 |
+
outputs=[result, seed]
|
140 |
+
)
|
141 |
+
|
142 |
+
demo.launch()
|
143 |
|