onlysainaa commited on
Commit
ddf9cdc
·
1 Parent(s): 2d59f11

Add application file

Browse files
Files changed (1) hide show
  1. app.py +47 -0
app.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import gradio as gr
3
+ # Check if CUDA (GPU) is available
4
+ import torch
5
+ from transformers import T5ForConditionalGeneration, PreTrainedTokenizerFast
6
+
7
+ # Define the path to the checkpoint directory
8
+ checkpoint_dir = "/home/only_sainaa/home/Huggingface/marianmt_conversion/results/checkpoint-221496"
9
+
10
+ # Load the model
11
+ model = T5ForConditionalGeneration.from_pretrained(checkpoint_dir)
12
+ model.eval()
13
+ # Load the tokenizer using PreTrainedTokenizerFast
14
+ tokenizer = PreTrainedTokenizerFast.from_pretrained(checkpoint_dir)
15
+
16
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
17
+
18
+ # Move the model to the same device (GPU or CPU)
19
+ model.to(device)
20
+
21
+ # Function to perform translation using the model
22
+ def translate_text(input_text):
23
+ # Tokenize the input text
24
+ inputs = tokenizer(input_text, return_tensors="pt")
25
+
26
+ # Move the input tensors to the same device as the model
27
+ inputs = {k: v.to(device) for k, v in inputs.items() if k in ['input_ids', 'attention_mask']}
28
+
29
+ # Generate translation
30
+ outputs = model.generate(**inputs)
31
+
32
+ # Decode the output to human-readable text
33
+ translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
34
+
35
+ return translated_text
36
+
37
+ # Create a Gradio interface
38
+ gr_interface = gr.Interface(
39
+ fn=translate_text,
40
+ inputs="text",
41
+ outputs="text",
42
+ title="Mongolian Cyrillic to Mongolian Script Model",
43
+ description="Enter text in Mongolian Cyrillic"
44
+ )
45
+
46
+ # Launch the Gradio interface
47
+ gr_interface.launch()