onisj commited on
Commit
7dd1af0
·
verified ·
1 Parent(s): b2747a4

add app.py file

Browse files
Files changed (1) hide show
  1. app.py +103 -0
app.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import numpy as np
4
+ import requests
5
+ import torch
6
+ from tqdm.auto import tqdm
7
+ from transformers import BertModel, BertTokenizer
8
+ from sklearn.metrics.pairwise import cosine_similarity
9
+
10
+ # CourseFAQBot class
11
+ class CourseFAQBot:
12
+ def __init__(self, model_name="bert-base-uncased", docs_url=None, batch_size=8):
13
+ self.tokenizer = BertTokenizer.from_pretrained(model_name)
14
+ self.model = BertModel.from_pretrained(model_name)
15
+ self.model.eval() # Set the model to evaluation mode if not training
16
+ self.batch_size = batch_size
17
+ self.df = self._download_and_process_documents(docs_url)
18
+ self.document_embeddings = self.compute_embeddings(self.df['text'].tolist())
19
+
20
+ def _download_and_process_documents(self, docs_url):
21
+ """
22
+ Download and process the document data.
23
+ """
24
+ docs_response = requests.get(docs_url)
25
+ documents_raw = docs_response.json()
26
+
27
+ documents = []
28
+ for course in documents_raw:
29
+ course_name = course['course']
30
+ for doc in course['documents']:
31
+ doc['course'] = course_name
32
+ documents.append(doc)
33
+
34
+ # Create the DataFrame
35
+ return pd.DataFrame(documents, columns=['course', 'section', 'question', 'text'])
36
+
37
+ def make_batches(self, seq, n):
38
+ """
39
+ Split a sequence into batches of size n.
40
+ """
41
+ result = []
42
+ for i in range(0, len(seq), n):
43
+ batch = seq[i:i+n]
44
+ result.append(batch)
45
+ return result
46
+
47
+ def compute_embeddings(self, texts):
48
+ """
49
+ Compute embeddings for a list of texts using a pre-trained transformer model.
50
+ """
51
+ text_batches = self.make_batches(texts, self.batch_size)
52
+ all_embeddings = []
53
+
54
+ for batch in tqdm(text_batches, desc="Computing embeddings"):
55
+ encoded_input = self.tokenizer(batch, padding=True, truncation=True, return_tensors='pt')
56
+ with torch.no_grad():
57
+ outputs = self.model(**encoded_input)
58
+ hidden_states = outputs.last_hidden_state
59
+ batch_embeddings = hidden_states.mean(dim=1)
60
+ batch_embeddings_np = batch_embeddings.cpu().numpy()
61
+ all_embeddings.append(batch_embeddings_np)
62
+
63
+ final_embeddings = np.vstack(all_embeddings)
64
+ return final_embeddings
65
+
66
+ def query(self, query_text, top_n=10):
67
+ """
68
+ Perform a query to find the most relevant documents.
69
+ """
70
+ query_embedding = self.compute_embeddings([query_text])
71
+ similarities = cosine_similarity(query_embedding, self.document_embeddings).flatten()
72
+ top_n_indices = similarities.argsort()[-top_n:][::-1]
73
+ top_n_documents = self.df.iloc[top_n_indices]
74
+ return top_n_documents
75
+
76
+ # Streamlit application
77
+ st.title("FAQ Search Engine for DataTalks")
78
+
79
+ # Initialize CourseFAQBot
80
+ docs_url = 'https://github.com/alexeygrigorev/llm-rag-workshop/raw/main/notebooks/documents.json'
81
+ faq_bot = CourseFAQBot(docs_url=docs_url)
82
+
83
+ # Input fields for query and filters
84
+ query = st.text_input("Enter your query:")
85
+ courses = st.multiselect("Select course(s):", options=faq_bot.df['course'].unique())
86
+
87
+ # Search button
88
+ if st.button("Search"):
89
+ results = faq_bot.query(query)
90
+
91
+ # Filter results by selected courses if any
92
+ if courses:
93
+ results = results[results['course'].isin(courses)]
94
+
95
+ # Display results with space in between
96
+ for i, result in enumerate(results.to_dict(orient='records')):
97
+ st.write(f"### Result {i+1}")
98
+ st.write(f"**Course**: {result['course']}")
99
+ st.write(f"**Section**: {result['section']}")
100
+ st.write(f"**Question**: {result['question']}")
101
+ st.write(f"**Text**: {result['text']}")
102
+ st.write("") # Adds a blank space between results
103
+ st.markdown("---")