Spaces:
Sleeping
Sleeping
Upload tool
Browse files- app.py +4 -0
- requirements.txt +3 -0
- text_sentiment_analyzer.py +58 -0
- tool_config.json +5 -0
app.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import launch_gradio_demo
|
2 |
+
from text_sentiment_analyzer import SentAnalClassifierTool
|
3 |
+
|
4 |
+
launch_gradio_demo(SentAnalClassifierTool)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
trainDistilBERT
|
text_sentiment_analyzer.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
A script for a text sentiment analysis tool for the 🤗 Transformers Agent library.
|
3 |
+
"""
|
4 |
+
|
5 |
+
from transformers import Tool
|
6 |
+
from transformers.tools.base import get_default_device
|
7 |
+
from transformers import pipeline
|
8 |
+
from transformers import DistilBertTokenizerFast
|
9 |
+
from trainDistilBERT import DistilBertForMulticlassSequenceClassification
|
10 |
+
import torch
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
class SentAnalClassifierTool(Tool):
|
15 |
+
"""
|
16 |
+
A tool for sentiment analysis
|
17 |
+
"""
|
18 |
+
ckpt = "ongknsro/ACARISBERT-DistilBERT"
|
19 |
+
name = "text_sentiment_analyzer"
|
20 |
+
description = (
|
21 |
+
"This is a tool that returns a sentiment label for a given text sequence. "
|
22 |
+
"It takes the raw text as input, and "
|
23 |
+
"returns a sentiment label as output."
|
24 |
+
)
|
25 |
+
|
26 |
+
inputs = ["text"]
|
27 |
+
outputs = ["text"]
|
28 |
+
|
29 |
+
def __init__(self, device=None, **hub_kwargs) -> None:
|
30 |
+
super().__init__()
|
31 |
+
|
32 |
+
self.device = device
|
33 |
+
self.pipeline = None
|
34 |
+
self.hub_kwargs = hub_kwargs
|
35 |
+
|
36 |
+
def setup(self):
|
37 |
+
if self.device is None:
|
38 |
+
self.device = get_default_device()
|
39 |
+
|
40 |
+
self.tokenizer = DistilBertTokenizerFast.from_pretrained(self.ckpt)
|
41 |
+
|
42 |
+
self.model = DistilBertForMulticlassSequenceClassification.from_pretrained(self.ckpt).to(self.device)
|
43 |
+
|
44 |
+
self.pipeline = pipeline("sentiment-analysis", model=self.model, tokenizer=self.tokenizer, top_k=None, device=0)
|
45 |
+
|
46 |
+
self.is_initialized = True
|
47 |
+
|
48 |
+
def __call__(self, task: str):
|
49 |
+
if not self.is_initialized:
|
50 |
+
self.setup()
|
51 |
+
|
52 |
+
outputs = self.pipeline(task)
|
53 |
+
labels = [item["label"] for item in outputs[0]]
|
54 |
+
logits = [item["score"] for item in outputs[0]]
|
55 |
+
probs = torch.softmax(torch.tensor(logits), dim=0)
|
56 |
+
label = labels[torch.argmax(probs).item()]
|
57 |
+
|
58 |
+
return label
|
tool_config.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"description": "This is a tool that returns a sentiment label for a given text sequence. It takes the raw text as input, and returns a sentiment label as output.",
|
3 |
+
"name": "text_sentiment_analyzer",
|
4 |
+
"tool_class": "text_sentiment_analyzer.SentAnalClassifierTool"
|
5 |
+
}
|