Spaces:
Sleeping
Sleeping
File size: 8,895 Bytes
cdeb7b2 1d6a862 cdeb7b2 1d6a862 81c9675 cdeb7b2 1d6a862 c5a8c72 6a9593b add9a1c 807b3b1 6464518 807b3b1 6464518 7174ef9 4cceeb8 6464518 4cceeb8 bbc0512 6464518 4cceeb8 6464518 4cceeb8 d18ec92 4cceeb8 d18ec92 4cceeb8 d18ec92 4cceeb8 d18ec92 71991de 4cceeb8 d18ec92 7174ef9 81c9675 6bba7ce 81c9675 6bba7ce 81c9675 1d6a862 4bca50c cdeb7b2 4bca50c 0d9856e 4bca50c 7acded7 81c9675 7acded7 81c9675 b26952f 7acded7 81c9675 0d9856e 1d6a862 0d9856e 81c9675 6bba7ce 81c9675 0d9856e 81c9675 0d9856e cdeb7b2 81c9675 cdeb7b2 4bca50c 1d6a862 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
import gradio as gr
from gradio_client import Client, handle_file
import os
# Define your Hugging Face token (make sure to set it as an environment variable)
HF_TOKEN = os.getenv("HF_TOKEN") # Replace with your actual token if not using an environment variable
# Initialize the Gradio Client for the specified API
#client = Client("on1onmangoes/CNIHUB10724v10", hf_token=HF_TOKEN)
client = Client("on1onmangoes/CNIHUB101324v10", hf_token=HF_TOKEN)
# on1onmangoes/CNIHUB101324v10
# Here's how you can fix it:
# Update the conversation history within the function.
# Return the updated history along with any other required outputs.
def stream_chat_with_rag(
message: str,
history: list,
client_name: str,
system_prompt: str,
num_retrieved_docs: int = 10,
num_docs_final: int = 9,
temperature: float = 0,
max_new_tokens: int = 1024,
top_p: float = 1.0,
top_k: int = 20,
penalty: float = 1.2,
):
print(f"Message: {message}")
print(f"History: {history}")
# Build the conversation prompt including system prompt and history
conversation = system_prompt + "\n\n" + f"For Client: {client_name}\n"
if history: # Check if history exists
for user_input, assistant_response in history:
conversation += f"User: {user_input}\nAssistant: {assistant_response}\n"
conversation += f"User: {message}\nAssistant:" # Add the current message
# Prepare the data to send to the API
api_payload = {
"message": conversation, # Include the history in the message,
"history": history,
"client_name": client_name,
"system_prompt": "", # Optionally set to empty if included in the message
"num_retrieved_docs": num_retrieved_docs,
"num_docs_final": num_docs_final,
"temperature": temperature,
"max_new_tokens": max_new_tokens,
"top_p": top_p,
"top_k": top_k,
"penalty": penalty,
}
try:
# Make the API call to get the assistant's reply
response = client.predict(
api_name="/chat",
**api_payload
)
# Extract the assistant's reply
if isinstance(response, tuple):
answer = response[0]
else:
answer = response
# Debugging statements
print("The Answer in stream_chat_with_rag:")
print(answer)
# Update the conversation history
history.append((message, answer))
except Exception as e:
print(f"An error occurred: {e}")
answer = "There was an error retrieving the response."
# # Return the updated history
# return history
# def stream_chat_with_rag(
# message: str,
# history: list,
# client_name: str,
# system_prompt: str,
# num_retrieved_docs: int = 10,
# num_docs_final: int = 9,
# temperature: float = 0,
# max_new_tokens: int = 1024,
# top_p: float = 1.0,
# top_k: int = 20,
# penalty: float = 1.2,
# ):
# print(f"Message: {message}")
# print(f"History: {history}")
# # Build the conversation prompt including system prompt and history
# conversation = system_prompt + "\n\n" + f"For Client: {client_name}\n"
# for user_input, assistant_response in history:
# conversation += f"User: {user_input}\nAssistant: {assistant_response}\n"
# conversation += f"User: {message}\nAssistant:"
# # Prepare the data to send to the API
# # Remove 'history' from the payload since the API does not accept it
# api_payload = {
# "message": conversation, # Include the history in the message
# "client_name": client_name,
# "system_prompt": "", # Optionally set to empty if included in message
# "num_retrieved_docs": num_retrieved_docs,
# "num_docs_final": num_docs_final,
# "temperature": temperature,
# "max_new_tokens": max_new_tokens,
# "top_p": top_p,
# "top_k": top_k,
# "penalty": penalty,
# }
# # Make the API call to get the assistant's reply
# response = client.predict(
# api_name="/chat",
# **api_payload
# )
# # Extract the assistant's reply
# if isinstance(response, tuple):
# answer = response[0]
# else:
# answer = response
# # Debugging statements
# print("The Answer in stream_chat_with_rag:")
# print(answer)
# # Update the conversation history
# history.append((message, answer))
# # Return the updated history
# #return history
# Function to handle PDF processing API call
def process_pdf(pdf_file):
return client.predict(
pdf_file=handle_file(pdf_file),
client_name="rosariarossi", # Hardcoded client name
api_name="/process_pdf2"
)[1] # Return only the result string
# Function to handle search API call
def search_api(query):
return client.predict(query=query, api_name="/search_with_confidence")
# Function to handle RAG API call
def rag_api(question):
return client.predict(question=question, api_name="/answer_with_rag")
# CSS for custom styling
CSS = """
# chat-container {
height: 100vh;
}
"""
# Title for the application
TITLE = "<h1 style='text-align:center;'>My Gradio Chat App</h1>"
# Create the Gradio Blocks interface
with gr.Blocks(css=CSS) as demo:
gr.HTML(TITLE)
with gr.Tab("Chat"):
chatbot = gr.Chatbot() # Create a chatbot interface
chat_interface = gr.ChatInterface(
fn=stream_chat_with_rag,
chatbot=chatbot,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Dropdown(['rosariarossi','bianchifiordaliso','lorenzoverdi'],value="rosariarossi",label="Select Client", render=False,),
gr.Textbox(
value="You are an expert assistant",
label="System Prompt",
render=False,
),
gr.Slider(
minimum=1,
maximum=10,
step=1,
value=10,
label="Number of Initial Documents to Retrieve",
render=False,
),
gr.Slider(
minimum=1,
maximum=10,
step=1,
value=9,
label="Number of Final Documents to Retrieve",
render=False,
),
gr.Slider(
minimum=0.2,
maximum=1,
step=0.1,
value=0,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=8192,
step=1,
value=1024,
label="Max new tokens",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
label="Top P",
render=False,
),
gr.Slider(
minimum=1,
maximum=20,
step=1,
value=20,
label="Top K",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.2,
label="Repetition Penalty",
render=False,
),
],
)
with gr.Tab("Process PDF"):
pdf_input = gr.File(label="Upload PDF File")
pdf_output = gr.Textbox(label="PDF Result", interactive=False)
pdf_button = gr.Button("Process PDF")
pdf_button.click(
process_pdf,
inputs=[pdf_input],
outputs=pdf_output
)
with gr.Tab("Search"):
query_input = gr.Textbox(label="Enter Search Query")
search_output = gr.Textbox(label="Search Confidence Result", interactive=False)
search_button = gr.Button("Search")
search_button.click(
search_api,
inputs=query_input,
outputs=search_output
)
with gr.Tab("Answer with RAG"):
question_input = gr.Textbox(label="Enter Question for RAG")
rag_output = gr.Textbox(label="RAG Answer Result", interactive=False)
rag_button = gr.Button("Get Answer")
rag_button.click(
rag_api,
inputs=question_input,
outputs=rag_output
)
# Launch the app
if __name__ == "__main__":
demo.launch()
|