File size: 8,895 Bytes
cdeb7b2
1d6a862
 
cdeb7b2
1d6a862
81c9675
cdeb7b2
1d6a862
c5a8c72
 
 
6a9593b
add9a1c
 
 
 
 
 
807b3b1
 
 
 
 
6464518
 
 
 
 
 
 
807b3b1
6464518
 
 
 
7174ef9
4cceeb8
 
 
 
6464518
 
 
4cceeb8
bbc0512
6464518
4cceeb8
6464518
 
 
 
 
 
 
 
 
4cceeb8
 
 
 
 
 
d18ec92
4cceeb8
 
 
 
 
d18ec92
4cceeb8
 
 
d18ec92
4cceeb8
 
d18ec92
71991de
 
 
4cceeb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d18ec92
7174ef9
81c9675
6bba7ce
81c9675
 
6bba7ce
81c9675
 
 
 
 
 
 
 
 
 
1d6a862
4bca50c
 
 
 
 
 
 
 
 
 
cdeb7b2
4bca50c
 
0d9856e
4bca50c
7acded7
81c9675
 
 
7acded7
81c9675
b26952f
7acded7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81c9675
0d9856e
1d6a862
0d9856e
 
 
 
81c9675
 
 
6bba7ce
81c9675
 
 
0d9856e
 
 
 
81c9675
 
 
 
 
 
 
0d9856e
 
 
cdeb7b2
81c9675
 
 
 
 
 
cdeb7b2
 
4bca50c
 
 
1d6a862
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import gradio as gr
from gradio_client import Client, handle_file
import os

# Define your Hugging Face token (make sure to set it as an environment variable)
HF_TOKEN = os.getenv("HF_TOKEN")  # Replace with your actual token if not using an environment variable

# Initialize the Gradio Client for the specified API
#client = Client("on1onmangoes/CNIHUB10724v10", hf_token=HF_TOKEN)
client = Client("on1onmangoes/CNIHUB101324v10", hf_token=HF_TOKEN)
# on1onmangoes/CNIHUB101324v10


# Here's how you can fix it:

# Update the conversation history within the function.
# Return the updated history along with any other required outputs.

def stream_chat_with_rag(
    message: str,
    history: list,
    client_name: str,
    system_prompt: str,
    num_retrieved_docs: int = 10,
    num_docs_final: int = 9,
    temperature: float = 0,
    max_new_tokens: int = 1024,
    top_p: float = 1.0,
    top_k: int = 20,
    penalty: float = 1.2,
):
    print(f"Message: {message}")
    print(f"History: {history}")

    # Build the conversation prompt including system prompt and history
    conversation = system_prompt + "\n\n" + f"For Client: {client_name}\n"
    if history:  # Check if history exists
        for user_input, assistant_response in history:
            conversation += f"User: {user_input}\nAssistant: {assistant_response}\n"
    conversation += f"User: {message}\nAssistant:"  # Add the current message

    # Prepare the data to send to the API
    api_payload = {
        "message": conversation,  # Include the history in the message,
        "history": history,
        "client_name": client_name,
        "system_prompt": "",  # Optionally set to empty if included in the message
        "num_retrieved_docs": num_retrieved_docs,
        "num_docs_final": num_docs_final,
        "temperature": temperature,
        "max_new_tokens": max_new_tokens,
        "top_p": top_p,
        "top_k": top_k,
        "penalty": penalty,
    }

    try:
        # Make the API call to get the assistant's reply
        response = client.predict(
            api_name="/chat",
            **api_payload
        )

        # Extract the assistant's reply
        if isinstance(response, tuple):
            answer = response[0]
        else:
            answer = response

        # Debugging statements
        print("The Answer in stream_chat_with_rag:")
        print(answer)

        # Update the conversation history
        history.append((message, answer))

    except Exception as e:
        print(f"An error occurred: {e}")
        answer = "There was an error retrieving the response."

    # # Return the updated history
    # return history


# def stream_chat_with_rag(
#     message: str,
#     history: list,
#     client_name: str,
#     system_prompt: str,
#     num_retrieved_docs: int = 10,
#     num_docs_final: int = 9,
#     temperature: float = 0,
#     max_new_tokens: int = 1024,
#     top_p: float = 1.0,
#     top_k: int = 20,
#     penalty: float = 1.2,
# ):
#     print(f"Message: {message}")
#     print(f"History: {history}")

#     # Build the conversation prompt including system prompt and history
#     conversation = system_prompt + "\n\n" + f"For Client: {client_name}\n"
#     for user_input, assistant_response in history:
#         conversation += f"User: {user_input}\nAssistant: {assistant_response}\n"
#     conversation += f"User: {message}\nAssistant:"

#     # Prepare the data to send to the API
#     # Remove 'history' from the payload since the API does not accept it
#     api_payload = {
#         "message": conversation,  # Include the history in the message
#         "client_name": client_name,
#         "system_prompt": "",  # Optionally set to empty if included in message
#         "num_retrieved_docs": num_retrieved_docs,
#         "num_docs_final": num_docs_final,
#         "temperature": temperature,
#         "max_new_tokens": max_new_tokens,
#         "top_p": top_p,
#         "top_k": top_k,
#         "penalty": penalty,
#     }

#     # Make the API call to get the assistant's reply
#     response = client.predict(
#         api_name="/chat",
#         **api_payload
#     )

#     # Extract the assistant's reply
#     if isinstance(response, tuple):
#         answer = response[0]
#     else:
#         answer = response

#     # Debugging statements
#     print("The Answer in stream_chat_with_rag:")
#     print(answer)

#     # Update the conversation history
#     history.append((message, answer))

#     # Return the updated history
#     #return history


# Function to handle PDF processing API call
def process_pdf(pdf_file):
    return client.predict(
        pdf_file=handle_file(pdf_file),
        client_name="rosariarossi",  # Hardcoded client name
        api_name="/process_pdf2"
    )[1]  # Return only the result string

# Function to handle search API call
def search_api(query):
    return client.predict(query=query, api_name="/search_with_confidence")

# Function to handle RAG API call
def rag_api(question):
    return client.predict(question=question, api_name="/answer_with_rag")

# CSS for custom styling
CSS = """
# chat-container {
    height: 100vh;
}
"""

# Title for the application
TITLE = "<h1 style='text-align:center;'>My Gradio Chat App</h1>"

# Create the Gradio Blocks interface
with gr.Blocks(css=CSS) as demo:
    gr.HTML(TITLE)
    with gr.Tab("Chat"):
        chatbot = gr.Chatbot()  # Create a chatbot interface

        chat_interface = gr.ChatInterface(
            fn=stream_chat_with_rag,
            chatbot=chatbot,
            additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
            additional_inputs=[
                gr.Dropdown(['rosariarossi','bianchifiordaliso','lorenzoverdi'],value="rosariarossi",label="Select Client", render=False,),
                gr.Textbox(
                    value="You are an expert assistant",
                    label="System Prompt",
                    render=False,
                ),
                gr.Slider(
                    minimum=1,
                    maximum=10,
                    step=1,
                    value=10,
                    label="Number of Initial Documents to Retrieve",
                    render=False,
                ),
                gr.Slider(
                    minimum=1,
                    maximum=10,
                    step=1,
                    value=9,
                    label="Number of Final Documents to Retrieve",
                    render=False,
                ),
                gr.Slider(
                    minimum=0.2,
                    maximum=1,
                    step=0.1,
                    value=0,
                    label="Temperature",
                    render=False,
                ),
                gr.Slider(
                    minimum=128,
                    maximum=8192,
                    step=1,
                    value=1024,
                    label="Max new tokens",
                    render=False,
                ),
                gr.Slider(
                    minimum=0.0,
                    maximum=1.0,
                    step=0.1,
                    value=1.0,
                    label="Top P",
                    render=False,
                ),
                gr.Slider(
                    minimum=1,
                    maximum=20,
                    step=1,
                    value=20,
                    label="Top K",
                    render=False,
                ),
                gr.Slider(
                    minimum=0.0,
                    maximum=2.0,
                    step=0.1,
                    value=1.2,
                    label="Repetition Penalty",
                    render=False,
                ),
            ],
        )

    with gr.Tab("Process PDF"):
        pdf_input = gr.File(label="Upload PDF File")
        pdf_output = gr.Textbox(label="PDF Result", interactive=False)

        pdf_button = gr.Button("Process PDF")
        pdf_button.click(
            process_pdf,
            inputs=[pdf_input],
            outputs=pdf_output
        )

    with gr.Tab("Search"):
        query_input = gr.Textbox(label="Enter Search Query")
        search_output = gr.Textbox(label="Search Confidence Result", interactive=False)

        search_button = gr.Button("Search")
        search_button.click(
            search_api,
            inputs=query_input,
            outputs=search_output
        )

    with gr.Tab("Answer with RAG"):
        question_input = gr.Textbox(label="Enter Question for RAG")
        rag_output = gr.Textbox(label="RAG Answer Result", interactive=False)

        rag_button = gr.Button("Get Answer")
        rag_button.click(
            rag_api,
            inputs=question_input,
            outputs=rag_output
        )

# Launch the app
if __name__ == "__main__":
    demo.launch()