on1onmangoes commited on
Commit
7d70c7e
·
verified ·
1 Parent(s): 4bca50c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +180 -6
app.py CHANGED
@@ -63,12 +63,6 @@ with gr.Blocks(css=CSS) as demo:
63
  chatbot=chatbot,
64
  additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
65
  additional_inputs=[
66
- gr.Dropdown(
67
- ['rosariarossi', 'bianchifiordaliso', 'lorenzoverdi'],
68
- value="rosariarossi",
69
- label="Select Client",
70
- render=False,
71
- ),
72
  gr.Textbox(
73
  value="You are an expert assistant",
74
  label="System Prompt",
@@ -178,6 +172,186 @@ if __name__ == "__main__":
178
 
179
 
180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
181
 
182
 
183
 
 
63
  chatbot=chatbot,
64
  additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
65
  additional_inputs=[
 
 
 
 
 
 
66
  gr.Textbox(
67
  value="You are an expert assistant",
68
  label="System Prompt",
 
172
 
173
 
174
 
175
+ # import gradio as gr
176
+ # from gradio_client import Client, handle_file
177
+ # import os
178
+
179
+ # # Define your Hugging Face token (make sure to set it as an environment variable)
180
+ # HF_TOKEN = os.getenv("HF_TOKEN") # Replace with your actual token if not using an environment variable
181
+
182
+ # # Initialize the Gradio Client for the specified API
183
+ # client = Client("on1onmangoes/CNIHUB10724v9", hf_token=HF_TOKEN)
184
+
185
+ # # Function to handle chat API call
186
+ # def stream_chat_with_rag(message, system_prompt, num_retrieved_docs, num_docs_final, temperature, max_new_tokens, top_p, top_k, penalty):
187
+ # response = client.predict(
188
+ # message=message,
189
+ # client_name="rosariarossi", # Hardcoded client name
190
+ # system_prompt=system_prompt,
191
+ # num_retrieved_docs=num_retrieved_docs,
192
+ # num_docs_final=num_docs_final,
193
+ # temperature=temperature,
194
+ # max_new_tokens=max_new_tokens,
195
+ # top_p=top_p,
196
+ # top_k=top_k,
197
+ # penalty=penalty,
198
+ # api_name="/chat"
199
+ # )
200
+ # return response
201
+
202
+ # # Function to handle PDF processing API call
203
+ # def process_pdf(pdf_file):
204
+ # return client.predict(
205
+ # pdf_file=handle_file(pdf_file),
206
+ # client_name="rosariarossi", # Hardcoded client name
207
+ # api_name="/process_pdf2"
208
+ # )[1] # Return only the result string
209
+
210
+ # # Function to handle search API call
211
+ # def search_api(query):
212
+ # return client.predict(query=query, api_name="/search_with_confidence")
213
+
214
+ # # Function to handle RAG API call
215
+ # def rag_api(question):
216
+ # return client.predict(question=question, api_name="/answer_with_rag")
217
+
218
+ # # CSS for custom styling
219
+ # CSS = """
220
+ # # chat-container {
221
+ # height: 100vh;
222
+ # }
223
+ # """
224
+
225
+ # # Title for the application
226
+ # TITLE = "<h1 style='text-align:center;'>My Gradio Chat App</h1>"
227
+
228
+ # # Create the Gradio Blocks interface
229
+ # with gr.Blocks(css=CSS) as demo:
230
+ # gr.HTML(TITLE)
231
+
232
+ # with gr.Tab("Chat"):
233
+ # chatbot = gr.Chatbot() # Create a chatbot interface
234
+
235
+ # chat_interface = gr.ChatInterface(
236
+ # fn=stream_chat_with_rag,
237
+ # chatbot=chatbot,
238
+ # additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
239
+ # additional_inputs=[
240
+ # gr.Dropdown(
241
+ # ['rosariarossi', 'bianchifiordaliso', 'lorenzoverdi'],
242
+ # value="rosariarossi",
243
+ # label="Select Client",
244
+ # render=False,
245
+ # ),
246
+ # gr.Textbox(
247
+ # value="You are an expert assistant",
248
+ # label="System Prompt",
249
+ # render=False,
250
+ # ),
251
+ # gr.Slider(
252
+ # minimum=1,
253
+ # maximum=10,
254
+ # step=1,
255
+ # value=10,
256
+ # label="Number of Initial Documents to Retrieve",
257
+ # render=False,
258
+ # ),
259
+ # gr.Slider(
260
+ # minimum=1,
261
+ # maximum=10,
262
+ # step=1,
263
+ # value=9,
264
+ # label="Number of Final Documents to Retrieve",
265
+ # render=False,
266
+ # ),
267
+ # gr.Slider(
268
+ # minimum=0.2,
269
+ # maximum=1,
270
+ # step=0.1,
271
+ # value=0,
272
+ # label="Temperature",
273
+ # render=False,
274
+ # ),
275
+ # gr.Slider(
276
+ # minimum=128,
277
+ # maximum=8192,
278
+ # step=1,
279
+ # value=1024,
280
+ # label="Max new tokens",
281
+ # render=False,
282
+ # ),
283
+ # gr.Slider(
284
+ # minimum=0.0,
285
+ # maximum=1.0,
286
+ # step=0.1,
287
+ # value=1.0,
288
+ # label="Top P",
289
+ # render=False,
290
+ # ),
291
+ # gr.Slider(
292
+ # minimum=1,
293
+ # maximum=20,
294
+ # step=1,
295
+ # value=20,
296
+ # label="Top K",
297
+ # render=False,
298
+ # ),
299
+ # gr.Slider(
300
+ # minimum=0.0,
301
+ # maximum=2.0,
302
+ # step=0.1,
303
+ # value=1.2,
304
+ # label="Repetition Penalty",
305
+ # render=False,
306
+ # ),
307
+ # ],
308
+ # )
309
+
310
+ # with gr.Tab("Process PDF"):
311
+ # pdf_input = gr.File(label="Upload PDF File")
312
+ # pdf_output = gr.Textbox(label="PDF Result", interactive=False)
313
+
314
+ # pdf_button = gr.Button("Process PDF")
315
+ # pdf_button.click(
316
+ # process_pdf,
317
+ # inputs=[pdf_input],
318
+ # outputs=pdf_output
319
+ # )
320
+
321
+ # with gr.Tab("Search"):
322
+ # query_input = gr.Textbox(label="Enter Search Query")
323
+ # search_output = gr.Textbox(label="Search Confidence Result", interactive=False)
324
+
325
+ # search_button = gr.Button("Search")
326
+ # search_button.click(
327
+ # search_api,
328
+ # inputs=query_input,
329
+ # outputs=search_output
330
+ # )
331
+
332
+ # with gr.Tab("Answer with RAG"):
333
+ # question_input = gr.Textbox(label="Enter Question for RAG")
334
+ # rag_output = gr.Textbox(label="RAG Answer Result", interactive=False)
335
+
336
+ # rag_button = gr.Button("Get Answer")
337
+ # rag_button.click(
338
+ # rag_api,
339
+ # inputs=question_input,
340
+ # outputs=rag_output
341
+ # )
342
+
343
+ # # Launch the app
344
+ # if __name__ == "__main__":
345
+ # demo.launch()
346
+
347
+
348
+
349
+
350
+
351
+
352
+
353
+
354
+
355
 
356
 
357