File size: 16,202 Bytes
cdeb7b2
1d6a862
 
cdeb7b2
1d6a862
81c9675
cdeb7b2
1d6a862
 
 
81c9675
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d6a862
cdeb7b2
 
 
 
 
 
 
 
0d9856e
7acded7
 
81c9675
 
 
 
7acded7
81c9675
7acded7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81c9675
0d9856e
1d6a862
0d9856e
 
 
 
81c9675
 
 
 
 
 
 
0d9856e
 
 
 
81c9675
 
 
 
 
 
 
0d9856e
 
 
cdeb7b2
81c9675
 
 
 
 
 
cdeb7b2
 
 
1d6a862
 
 
 
 
0d9856e
 
81c9675
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d9856e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d6a862
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
import gradio as gr
from gradio_client import Client, handle_file
import os

# Define your Hugging Face token (make sure to set it as an environment variable)
HF_TOKEN = os.getenv("HF_TOKEN")  # Replace with your actual token if not using an environment variable

# Initialize the Gradio Client for the specified API
client = Client("on1onmangoes/CNIHUB10724v9", hf_token=HF_TOKEN)

# Function to handle chat API call
def stream_chat_with_rag(message, client_name, system_prompt, num_retrieved_docs, num_docs_final, temperature, max_new_tokens, top_p, top_k, penalty):
    response = client.predict(
        message=message,
        client_name=client_name,
        system_prompt=system_prompt,
        num_retrieved_docs=num_retrieved_docs,
        num_docs_final=num_docs_final,
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        top_k=top_k,
        penalty=penalty,
        api_name="/chat"
    )
    return response

# Function to handle PDF processing API call
def process_pdf(pdf_file, client_name):
    return client.predict(
        pdf_file=handle_file(pdf_file),
        client_name=client_name,
        api_name="/process_pdf2"
    )[1]  # Return only the result string

# Function to handle search API call
def search_api(query):
    return client.predict(query=query, api_name="/search_with_confidence")

# Function to handle RAG API call
def rag_api(question):
    return client.predict(question=question, api_name="/answer_with_rag")

# Create the Gradio Blocks interface
with gr.Blocks() as app:
    gr.Markdown("### Login")
    
    with gr.Row():
        username_input = gr.Textbox(label="Username", placeholder="Enter your username")
        password_input = gr.Textbox(label="Password", placeholder="Enter your password", type="password")
    
    with gr.Tab("Chat"):
        chatbot = gr.Chatbot()  # Create a chatbot interface

        chat_interface = gr.ChatInterface(
            fn=stream_chat_with_rag,
            chatbot=chatbot,
            fill_height=True,
            additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
            additional_inputs=[
                gr.Dropdown(
                    ['rosariarossi', 'bianchifiordaliso', 'lorenzoverdi'],
                    value="rosariarossi",
                    label="Select Client",
                    render=False,
                ),
                gr.Textbox(
                    value="You are an expert assistant",
                    label="System Prompt",
                    render=False,
                ),
                gr.Slider(
                    minimum=1,
                    maximum=10,
                    step=1,
                    value=10,
                    label="Number of Initial Documents to Retrieve",
                    render=False,
                ),
                gr.Slider(
                    minimum=1,
                    maximum=10,
                    step=1,
                    value=9,
                    label="Number of Final Documents to Retrieve",
                    render=False,
                ),
                gr.Slider(
                    minimum=0.2,
                    maximum=1,
                    step=0.1,
                    value=0,
                    label="Temperature",
                    render=False,
                ),
                gr.Slider(
                    minimum=128,
                    maximum=8192,
                    step=1,
                    value=1024,
                    label="Max new tokens",
                    render=False,
                ),
                gr.Slider(
                    minimum=0.0,
                    maximum=1.0,
                    step=0.1,
                    value=1.0,
                    label="Top P",
                    render=False,
                ),
                gr.Slider(
                    minimum=1,
                    maximum=20,
                    step=1,
                    value=20,
                    label="Top K",
                    render=False,
                ),
                gr.Slider(
                    minimum=0.0,
                    maximum=2.0,
                    step=0.1,
                    value=1.2,
                    label="Repetition Penalty",
                    render=False,
                ),
            ],
        )

    with gr.Tab("Process PDF"):
        pdf_input = gr.File(label="Upload PDF File")
        pdf_output = gr.Textbox(label="PDF Result", interactive=False)

        pdf_button = gr.Button("Process PDF")
        pdf_button.click(
            process_pdf,
            inputs=[pdf_input, client_name_dropdown],
            outputs=pdf_output
        )

    with gr.Tab("Search"):
        query_input = gr.Textbox(label="Enter Search Query")
        search_output = gr.Textbox(label="Search Confidence Result", interactive=False)

        search_button = gr.Button("Search")
        search_button.click(
            search_api,
            inputs=query_input,
            outputs=search_output
        )

    with gr.Tab("Answer with RAG"):
        question_input = gr.Textbox(label="Enter Question for RAG")
        rag_output = gr.Textbox(label="RAG Answer Result", interactive=False)

        rag_button = gr.Button("Get Answer")
        rag_button.click(
            rag_api,
            inputs=question_input,
            outputs=rag_output
        )

# Launch the app
app.launch()










# import gradio as gr
# from gradio_client import Client, handle_file
# import os

# # Define your Hugging Face token (make sure to set it as an environment variable)
# HF_TOKEN = os.getenv("HF_TOKEN")  # Replace with your actual token if not using env variable

# # Initialize the Gradio Client for the specified API
# client = Client("on1onmangoes/CNIHUB10724v9", hf_token=HF_TOKEN)

# # Authentication function
# def login(username, password):
#     if username == "your_username" and password == "your_password":  # Update with actual credentials
#         return True
#     else:
#         return False

# # Function to handle different API calls based on user input
# def handle_api_call(username, password, message=None, client_name="rosariarossi", 
#                     system_prompt="You are an expert assistant", num_retrieved_docs=10, 
#                     num_docs_final=9, temperature=0, max_new_tokens=1024, 
#                     top_p=1, top_k=20, penalty=1.2, 
#                     pdf_file=None, query=None, question=None):
    
#     if not login(username, password):
#         return "Invalid credentials! Please try again."

#     if message:
#         # Handle chat message
#         chat_result = client.predict(
#             message=message,
#             client_name=client_name,
#             system_prompt=system_prompt,
#             num_retrieved_docs=num_retrieved_docs,
#             num_docs_final=num_docs_final,
#             temperature=temperature,
#             max_new_tokens=max_new_tokens,
#             top_p=top_p,
#             top_k=top_k,
#             penalty=penalty,
#             api_name="/chat"
#         )
#         return chat_result
#     elif pdf_file:
#         # Handle PDF file
#         pdf_result = client.predict(
#             pdf_file=handle_file(pdf_file),
#             client_name=client_name,
#             api_name="/process_pdf2"
#         )
#         return pdf_result[1]  # Returning the string result from the PDF processing
#     elif query:
#         # Handle search query
#         search_result = client.predict(query=query, api_name="/search_with_confidence")
#         return search_result
#     elif question:
#         # Handle question for RAG
#         rag_result = client.predict(question=question, api_name="/answer_with_rag")
#         return rag_result
#     else:
#         return "No valid input provided!"

# # Create the Gradio Blocks interface
# with gr.Blocks() as app:
#     gr.Markdown("### Login")
    
#     with gr.Row():
#         username_input = gr.Textbox(label="Username", placeholder="Enter your username")
#         password_input = gr.Textbox(label="Password", placeholder="Enter your password", type="password")
    
#     with gr.Tab("Chat"):
#         message_input = gr.Textbox(label="Message", placeholder="Type your message here")
        
#         gr.Markdown("### Client Options")
#         client_name_dropdown = gr.Dropdown(
#             label="Select Client",
#             choices=["rosariarossi", "bianchifiordaliso", "lorenzoverdi"],
#             value="rosariarossi"
#         )
        
#         system_prompt_input = gr.Textbox(
#             label="System Prompt",
#             placeholder="Enter system prompt here",
#             value="You are an expert assistant"
#         )
        
#         num_retrieved_docs_slider = gr.Slider(
#             label="Number of Initial Documents to Retrieve",
#             minimum=1,
#             maximum=100,
#             step=1,
#             value=10
#         )
        
#         num_docs_final_slider = gr.Slider(
#             label="Number of Final Documents to Retrieve",
#             minimum=1,
#             maximum=100,
#             step=1,
#             value=9
#         )
        
#         temperature_slider = gr.Slider(
#             label="Temperature",
#             minimum=0,
#             maximum=2,
#             step=0.1,
#             value=0
#         )
        
#         max_new_tokens_slider = gr.Slider(
#             label="Max New Tokens",
#             minimum=1,
#             maximum=2048,
#             step=1,
#             value=1024
#         )
        
#         top_p_slider = gr.Slider(
#             label="Top P",
#             minimum=0,
#             maximum=1,
#             step=0.01,
#             value=1
#         )
        
#         top_k_slider = gr.Slider(
#             label="Top K",
#             minimum=1,
#             maximum=100,
#             step=1,
#             value=20
#         )
        
#         penalty_slider = gr.Slider(
#             label="Repetition Penalty",
#             minimum=1,
#             maximum=5,
#             step=0.1,
#             value=1.2
#         )
        
#         chat_output = gr.Textbox(label="Chat Response", interactive=False)

#     with gr.Tab("Process PDF"):
#         pdf_input = gr.File(label="Upload PDF File")
#         pdf_output = gr.Textbox(label="PDF Result", interactive=False)

#     with gr.Tab("Search"):
#         query_input = gr.Textbox(label="Enter Search Query")
#         search_output = gr.Textbox(label="Search Confidence Result", interactive=False)

#     with gr.Tab("Answer with RAG"):
#         question_input = gr.Textbox(label="Enter Question for RAG")
#         rag_output = gr.Textbox(label="RAG Answer Result", interactive=False)

#     api_button = gr.Button("Submit")

#     # Bind the button click to the handle_api_call function
#     api_button.click(
#         handle_api_call,
#         inputs=[
#             username_input, password_input,
#             message_input, client_name_dropdown, 
#             system_prompt_input, num_retrieved_docs_slider, 
#             num_docs_final_slider, temperature_slider, 
#             max_new_tokens_slider, top_p_slider, 
#             top_k_slider, penalty_slider,
#             pdf_input, query_input, question_input
#         ],
#         outputs=[
#             chat_output, pdf_output, search_output, rag_output
#         ]
#     )

# # Launch the app
# app.launch()







# import gradio as gr
# from gradio_client import Client, handle_file
# import os

# # Define your Hugging Face token (make sure to set it as an environment variable)
# HF_TOKEN = os.getenv("HF_TOKEN")  # Replace with your actual token if not using env variable

# # Initialize the Gradio Client for the specified API
# client = Client("on1onmangoes/CNIHUB10724v9", hf_token=HF_TOKEN)

# # Authentication function
# def login(username, password):
#     if username == "your_username" and password == "your_password":  # Update with actual credentials
#         return True
#     else:
#         return False

# # Function to handle different API calls based on user input
# def handle_api_call(username, password, audio_file=None, pdf_file=None, message=None, query=None, question=None):
#     if not login(username, password):
#         return "Invalid credentials! Please try again."

#     if audio_file:
#         # Handle audio file using the appropriate API
#         result = client.predict(audio=handle_file(audio_file), api_name="/process_audio")  # Example endpoint for audio processing
#         return result
#     elif pdf_file:
#         # Handle PDF file
#         pdf_result = client.predict(pdf_file=handle_file(pdf_file), client_name="rosariarossi", api_name="/process_pdf2")
#         return pdf_result[1]  # Returning the string result from the PDF processing
#     elif message:
#         # Handle chat message
#         chat_result = client.predict(
#             message=message,
#             client_name="rosariarossi",
#             system_prompt="You are an expert assistant",
#             num_retrieved_docs=10,
#             num_docs_final=9,
#             temperature=0,
#             max_new_tokens=1024,
#             top_p=1,
#             top_k=20,
#             penalty=1.2,
#             api_name="/chat"
#         )
#         return chat_result
#     elif query:
#         # Handle search query
#         search_result = client.predict(query=query, api_name="/search_with_confidence")
#         return search_result
#     elif question:
#         # Handle question for RAG
#         rag_result = client.predict(question=question, api_name="/answer_with_rag")
#         return rag_result
#     else:
#         return "No valid input provided!"

# # Create the Gradio Blocks interface
# with gr.Blocks() as app:
#     gr.Markdown("### Login")
    
#     with gr.Row():
#         username_input = gr.Textbox(label="Username", placeholder="Enter your username")
#         password_input = gr.Textbox(label="Password", placeholder="Enter your password", type="password")
    
#     audio_input = gr.Audio(label="Upload Audio File", type="filepath")
#     pdf_input = gr.File(label="Upload PDF File")
    
#     message_input = gr.Textbox(label="Enter Message for Chat")
#     query_input = gr.Textbox(label="Enter Search Query")
#     question_input = gr.Textbox(label="Enter Question for RAG")

#     output_text = gr.Textbox(label="Output", interactive=False)

#     # Bind the button click to the handle_api_call function
#     api_button = gr.Button("Submit")
#     api_button.click(
#         handle_api_call,
#         inputs=[username_input, password_input, audio_input, pdf_input, message_input, query_input, question_input],
#         outputs=output_text
#     )

# # Launch the app
# app.launch()





# import gradio as gr

# # Define a function for the main application
# def greet(name):
#     return f"Hello {name}!"

# # Define a function for the authentication
# def login(username, password):
#     if username == "your_username" and password == "your_password":
#         return True
#     else:
#         return False

# # Create the Gradio Blocks interface
# with gr.Blocks() as app:
#     gr.Markdown("### Login")
    
#     with gr.Row():
#         username_input = gr.Textbox(label="Username", placeholder="Enter your username")
#         password_input = gr.Textbox(label="Password", placeholder="Enter your password", type="password")
    
#     login_button = gr.Button("Login")
#     output_text = gr.Textbox(label="Output", interactive=False)

#     # Function to handle login and display greeting
#     def handle_login(username, password):
#         if login(username, password):
#             # Clear the password field and display the greeting
#             #password_input.clear()
#             return greet(username)
#         else:
#             return "Invalid credentials! Please try again."
    
#     # Bind the button click to the handle_login function
#     login_button.click(handle_login, inputs=[username_input, password_input], outputs=output_text)

# # Launch the app
# app.launch()