import torch import torch.nn.functional as F from einops import rearrange def _unpad_input(input_ids, attention_mask): seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() max_seqlen_in_batch = seqlens_in_batch.max().item() cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)) input_ids = rearrange(input_ids, 'b s ... -> (b s) ...')[indices] return input_ids, indices, cu_seqlens, max_seqlen_in_batch def _pad_input(hidden_states, indices, batch, seqlen): output = torch.zeros(batch * seqlen, *hidden_states.shape[1:], device=hidden_states.device, dtype=hidden_states.dtype) output[indices] = hidden_states return rearrange(output, '(b s) ... -> b s ...', b=batch)