"""Datamodule for Llava Pretraining and Finetuning"""
import os
import re
from PIL import Image
import numpy as np
import re
import tempfile
from typing import Dict, List, Union, Tuple
import traceback
import json

import torch
import torch.nn.functional as F
from transformers import DataCollatorForSeq2Seq

from tools.rw_utils import read_jsonlines
from torch.utils.data import Dataset, DataLoader

np_str_obj_array_pattern = re.compile(r"[SaUO]")

default_collate_err_msg_format = (
    "default_collate: batch must contain tensors, numpy arrays, numbers, "
    "dicts or lists; found {}"
)

from .custom_data_parsers.standard_vision_parser import VisionParser
from .custom_data_parsers.object_tracking_parser import ObjectTrackingParser
from .custom_data_parsers.multi_images_parser import MultiImagesParser
from .custom_data_parsers.video_permutation_parser import VideoPermutationParser
from .custom_data_parsers.utils_visualize import visualize_image_bbox

from .tarsier_processor import TarsierProcessor

from tools.rw_utils import NumpyArrayEncoder
from .utils import DictToObject
import os

HF_TOKEN = os.environ.get('HF_TOKEN', '')

class TarsierDataProcessor:
    def __init__(
        self,
        processor: TarsierProcessor,
        n_frames: Union[int, list],
        max_n_frames=256,
        max_pixels=int(1280 * 720 // 2),
        min_pixels=0,
        max_seq_len=None,
        is_training=True,  # 会影响:1. 训练和测试时采帧不同;2. 测试时忽略 response。
        print_data_error=True,
        do_image_padding=False,
        do_image_crop=False,
        do_image_resize=True,
        video_sampling_strategy={},
        prompt='',
        train_task='sft',
        **kwargs
    ):
        self.kwargs = kwargs

        self.processor = processor
        self.pad_collator = DataCollatorForSeq2Seq(processor.tokenizer, padding='longest')
        
        self.processor.max_seq_len = self.tokenizer.model_max_length if max_seq_len is None else max_seq_len

        self.n_frames = n_frames
        self.max_n_frames = max_n_frames
        self.max_pixels = max_pixels
        self.min_pixels = min_pixels

        self.is_training = is_training
        self.print_data_error = print_data_error
        self.do_image_padding = do_image_padding
        self.do_image_crop = do_image_crop
        self.do_image_resize = do_image_resize
        self.video_sampling_strategy = video_sampling_strategy
        self.prompt = prompt
        self.train_task = train_task

        self.object_tracking_parser = ObjectTrackingParser(
            n_frames=self.n_frames,
            max_objects=4,
            is_training=self.is_training,
        )
        self.multi_images_parser = MultiImagesParser(
            n_frames=self.n_frames,
            is_training=self.is_training,
        )
        self.video_permutation_parser = VideoPermutationParser(
            n_frames=self.n_frames,
            is_training=self.is_training,
            video_sampling_strategy=self.video_sampling_strategy,
        )
        self.vision_parser = VisionParser(
            n_frames=self.n_frames,
            max_n_frames=self.max_n_frames,
            is_training=self.is_training,
            video_sampling_strategy=self.video_sampling_strategy
        )

    def select_parser(self, data_dict):
        if data_dict.get('task', None) == 'video/object_tracking':
            return self.object_tracking_parser
        elif data_dict.get('task', None) == 'multi_images':
            return self.multi_images_parser
        elif data_dict.get('dataset', None) == 'video_permutation':
            return self.video_permutation_parser
        else:
            return self.vision_parser
    
    def parse_image_processing_config(self, data_dict):
        image_processing_config=data_dict.get('image_processing_config', {})

        do_padding = image_processing_config.get('do_padding', self.do_image_padding)
        do_crop = image_processing_config.get('do_crop', self.do_image_crop)
        do_resize = image_processing_config.get('do_resize', self.do_image_resize)
        max_pixels = image_processing_config.get('max_pixels', self.max_pixels)
        min_pixels = image_processing_config.get('min_pixels', self.min_pixels)

        assert min_pixels <= max_pixels

        image_processing_config['do_padding'] = do_padding
        image_processing_config['do_crop'] = do_crop
        image_processing_config['do_resize'] = do_resize
        image_processing_config['max_pixels'] = max_pixels
        image_processing_config['min_pixels'] = min_pixels

        return image_processing_config
            

    def _transform(self, raw_data_dict: Dict) -> Dict:
        data_dict = json.loads(json.dumps(raw_data_dict, cls=NumpyArrayEncoder))
        del raw_data_dict

        if self.prompt:
            for msg in data_dict['messages']:
                if msg['role'] == 'user':
                    for content in msg['content']:
                        if content['type'] == 'text':
                            content['text'] = self.prompt

        data_dict_copy = json.loads(json.dumps(data_dict, cls=NumpyArrayEncoder))

        image_processing_config = self.parse_image_processing_config(data_dict)
        parser = self.select_parser(data_dict)
        messages = parser.transform(data_dict, image_processing_config)
        data_dict_copy['extra_info'] = data_dict.pop('extra_info', {})

        # visualize_image_bbox(data_dict, image_processing_config, self.processor)
        outputs = self.processor(messages, image_processing_config, is_training=self.is_training)
        
        # if not self.is_training:
        outputs['raw_data_dict'] = data_dict_copy

        return [outputs]
    
    def _split_chosen_rejected(self, data_dict: Dict):
        chosen_data_dict = data_dict
        rejected_data_dict = json.loads(json.dumps(data_dict, cls=NumpyArrayEncoder))
        for msg in chosen_data_dict['messages']:
            if msg['role'] == 'assistant':
                for content in msg['content']:
                    if content['type'] == 'text':
                        content['text'] = content['chosen']
        
        for msg in rejected_data_dict['messages']:
            if msg['role'] == 'assistant':
                for content in msg['content']:
                    if content['type'] == 'text':
                        content['text'] = content['rejected']

        return chosen_data_dict, rejected_data_dict

    def transform(self, data_dict: Dict) -> Dict:
        try:
            if self.train_task == 'dpo':
                chosen_data_dict, rejected_data_dict = self._split_chosen_rejected(data_dict)
                return self._transform(chosen_data_dict) + self._transform(rejected_data_dict)
            return self._transform(data_dict)
        except Exception as e:
            if self.print_data_error:
                print(traceback.format_exc())
                print(f'Error occurs when processing: \n{data_dict}')
            return []

    def batch_transform(self, batch_data: List[Dict]) -> Dict:
        model_inputs = {}
        # if not self.is_training:
        raw_data_dict = [d.pop('raw_data_dict') for d in batch_data]
        model_inputs['raw_data_dict'] = raw_data_dict

        batch_pixel_values = [d.pop('pixel_values') for d in batch_data if 'pixel_values' in d]
        batch_image_grid_thw = [d.pop('image_grid_thw') for d in batch_data if 'image_grid_thw' in d]
        if len(batch_pixel_values) == 0:
            vision_placeholder = self.get_vision_placeholder()
            batch_pixel_values = [vision_placeholder.get('pixel_values')]
            batch_image_grid_thw = [vision_placeholder.get('image_grid_thw')] if 'image_grid_thw' in vision_placeholder else []

        model_inputs['pixel_values'] = torch.cat(batch_pixel_values, dim=0)
        if len(batch_image_grid_thw) > 0:
            model_inputs['image_grid_thw'] = torch.cat(batch_image_grid_thw, dim=0)
    
        batch_num_images = [d.pop('num_images') for d in batch_data]
        model_inputs['num_images'] = torch.tensor(batch_num_images)
        model_inputs.update(self.pad_collator(batch_data))
        return model_inputs
    
    def __call__(self, batch_data: Union[Dict, List[Dict]]) -> Dict:
        if isinstance(batch_data, dict):
            batch_data = [batch_data]
        batch = [self.transform(d)[0] for d in batch_data]
        return self.batch_transform(batch)
    
    def get_vision_placeholder(self):
        messages = [{"role": "user", "content": [{"type": "image", "image": Image.new(mode='RGB', size=(336, 336))}]}]
        image_processing_config = self.parse_image_processing_config({})
        return self.processor(messages, image_processing_config)
    
    def get_text_placeholder(self):
        messages = [
            {"role": "user", "content": [{"type": "text", "text": "Hello!"}]},
            {"role": "assistant", "content": [{"type": "text", "text": "Thank you very much"}]},
        ]
        image_processing_config = self.parse_image_processing_config({})
        return self.processor(messages, image_processing_config)

def init_processor(processor: Union[TarsierProcessor, str]=None, config: Dict=None):
    config = DictToObject(config) if isinstance(config, dict) else config
    if isinstance(processor, str):
        sub_processor = TarsierProcessor.from_pretrained(
            processor, 
            padding_side='left',
            trust_remote_code=True,
            token=HF_TOKEN,
        )
    else:
        sub_processor = processor
    processor = TarsierDataProcessor(
        processor=sub_processor,
        n_frames=config.n_frames,
        max_n_frames=config.max_n_frames,
        max_pixels=config.max_pixels,
        min_pixels=config.min_pixels,
        max_seq_len=config.max_seq_len,
        is_training=config.is_training,
        print_data_error=config.print_data_error,
        do_image_padding=config.do_image_padding,
        do_image_crop=config.do_image_crop,
        do_image_resize=config.do_image_resize,
        video_sampling_strategy=config.video_sampling_strategy,
        prompt=config.prompt,
        train_task=config.train_task
    )
    return processor

class TarsierDataset(Dataset):
    def __init__(self, ann_path="", anns=None, config: Dict=None, processor: Union[TarsierDataProcessor, TarsierProcessor, str]=None):
        self.config = DictToObject(config) if isinstance(config, dict) else config
        if not isinstance(processor, TarsierDataProcessor):
            self.processor = init_processor(processor, config)
        else:
            self.processor = processor
        if anns is None:
            self.anns = []
            if isinstance(ann_path, str):
                ann_path = [ann_path]
            for path in ann_path:
                self.anns.extend(read_jsonlines(path))
        else:
            self.anns = anns

    def __len__(self):
        return len(self.anns)
    
    def __getitem__(self, index):
        if index < 0 or index >= len(self.anns):
            raise IndexError("Index out of range")
        try:
            ann = self.anns[index]
            model_inputs = self.processor(ann)
        except Exception as e:
            print(f"Load data error: {e}")
            return ann, None
        return ann, model_inputs