Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import math | |
from dataclasses import dataclass | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.nn import LayerNorm | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.configuration_utils import PretrainedConfig | |
from transformers.modeling_rope_utils import rope_config_validation, ROPE_INIT_FUNCTIONS | |
from transformers.cache_utils import Cache, SlidingWindowCache, StaticCache | |
from transformers.modeling_attn_mask_utils import AttentionMaskConverter | |
from transformers.utils import ( | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
is_flash_attn_2_available, | |
is_flash_attn_greater_or_equal_2_10, | |
logging, | |
replace_return_docstrings, | |
) | |
from transformers.modeling_outputs import ( | |
BaseModelOutputWithPast, | |
ModelOutput, | |
) | |
from transformers.activations import ACT2FN | |
from transformers.generation import GenerationMixin | |
if is_flash_attn_2_available(): | |
from flash_attn import flash_attn_varlen_func | |
from transformers.modeling_flash_attention_utils import _flash_attention_forward | |
else: | |
flash_attn_varlen_func = None | |
# from apex.normalization.fused_layer_norm import fused_rms_norm_affine | |
logger = logging.get_logger(__name__) | |
class Qwen2VLCausalLMOutputWithPast(ModelOutput): | |
""" | |
Base class for Qwen2VL causal language model (or autoregressive) outputs. | |
Args: | |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): | |
Language modeling loss (for next-token prediction). | |
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | |
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) | |
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see | |
`past_key_values` input) to speed up sequential decoding. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*): | |
The rope index difference between sequence length and multimodal rope. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
logits: torch.FloatTensor = None | |
past_key_values: Optional[List[torch.FloatTensor]] = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
class Qwen2VLVisionConfig(PretrainedConfig): | |
model_type = "qwen2_vl" | |
def __init__( | |
self, | |
depth=32, | |
embed_dim=1280, | |
hidden_size=3584, | |
hidden_act="quick_gelu", | |
mlp_ratio=4, | |
num_heads=16, | |
in_channels=3, | |
patch_size=14, | |
spatial_merge_size=2, | |
temporal_patch_size=2, | |
attn_implementation='flash_attention_2', | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.depth = depth | |
self.embed_dim = embed_dim | |
self.hidden_size = hidden_size | |
self.hidden_act = hidden_act | |
self.mlp_ratio = mlp_ratio | |
self.num_heads = num_heads | |
self.in_channels = in_channels | |
self.patch_size = patch_size | |
self.spatial_merge_size = spatial_merge_size | |
self.temporal_patch_size = temporal_patch_size | |
self.attn_implementation = attn_implementation | |
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
cls._set_token_in_kwargs(kwargs) | |
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
if config_dict.get("model_type") == "qwen2_vl": | |
config_dict = config_dict["vision_config"] | |
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
logger.warning( | |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
) | |
return cls.from_dict(config_dict, **kwargs) | |
class Qwen2VLConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`Qwen2VLModel`]. It is used to instantiate a | |
Qwen2-VL model according to the specified arguments, defining the model architecture. Instantiating a configuration | |
with the defaults will yield a similar configuration to that of | |
Qwen2-VL-7B-Instruct [Qwen/Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct). | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 152064): | |
Vocabulary size of the Qwen2VL model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`Qwen2VLModel`] | |
hidden_size (`int`, *optional*, defaults to 8192): | |
Dimension of the hidden representations. | |
intermediate_size (`int`, *optional*, defaults to 29568): | |
Dimension of the MLP representations. | |
num_hidden_layers (`int`, *optional*, defaults to 80): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 64): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
num_key_value_heads (`int`, *optional*, defaults to 8): | |
This is the number of key_value heads that should be used to implement Grouped Query Attention. If | |
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | |
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When | |
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | |
by meanpooling all the original heads within that group. For more details checkout [this | |
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`. | |
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | |
The non-linear activation function (function or string) in the decoder. | |
max_position_embeddings (`int`, *optional*, defaults to 32768): | |
The maximum sequence length that this model might ever be used with. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
rms_norm_eps (`float`, *optional*, defaults to 1e-05): | |
The epsilon used by the rms normalization layers. | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). Only | |
relevant if `config.is_decoder=True`. | |
tie_word_embeddings (`bool`, *optional*, defaults to `False`): | |
Whether the model's input and output word embeddings should be tied. | |
rope_theta (`float`, *optional*, defaults to 1000000.0): | |
The base period of the RoPE embeddings. | |
use_sliding_window (`bool`, *optional*, defaults to `False`): | |
Whether to use sliding window attention. | |
sliding_window (`int`, *optional*, defaults to 4096): | |
Sliding window attention (SWA) window size. If not specified, will default to `4096`. | |
max_window_layers (`int`, *optional*, defaults to 80): | |
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention. | |
attention_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
vision_config (`Dict`, *optional*): | |
The config for the visual encoder initialization. | |
rope_scaling (`Dict`, *optional*): | |
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type | |
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value | |
accordingly. | |
Expected contents: | |
`rope_type` (`str`): | |
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', | |
'llama3'], with 'default' being the original RoPE implementation. | |
`factor` (`float`, *optional*): | |
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In | |
most scaling types, a `factor` of x will enable the model to handle sequences of length x * | |
original maximum pre-trained length. | |
`original_max_position_embeddings` (`int`, *optional*): | |
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during | |
pretraining. | |
`attention_factor` (`float`, *optional*): | |
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention | |
computation. If unspecified, it defaults to value recommended by the implementation, using the | |
`factor` field to infer the suggested value. | |
`beta_fast` (`float`, *optional*): | |
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear | |
ramp function. If unspecified, it defaults to 32. | |
`beta_slow` (`float`, *optional*): | |
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear | |
ramp function. If unspecified, it defaults to 1. | |
`short_factor` (`List[float]`, *optional*): | |
Only used with 'longrope'. The scaling factor to be applied to short contexts (< | |
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden | |
size divided by the number of attention heads divided by 2 | |
`long_factor` (`List[float]`, *optional*): | |
Only used with 'longrope'. The scaling factor to be applied to long contexts (< | |
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden | |
size divided by the number of attention heads divided by 2 | |
`low_freq_factor` (`float`, *optional*): | |
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE | |
`high_freq_factor` (`float`, *optional*): | |
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE | |
```python | |
>>> from transformers import Qwen2VLForConditionalGeneration, Qwen2VLConfig | |
>>> # Initializing a Qwen2VL style configuration | |
>>> configuration = Qwen2VLConfig() | |
>>> # Initializing a model from the Qwen2-VL-7B style configuration | |
>>> model = Qwen2VLForConditionalGeneration(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "qwen2_vl" | |
keys_to_ignore_at_inference = ["past_key_values"] | |
def __init__( | |
self, | |
vocab_size=152064, | |
hidden_size=8192, | |
intermediate_size=29568, | |
num_hidden_layers=80, | |
num_attention_heads=64, | |
num_key_value_heads=8, | |
hidden_act="silu", | |
max_position_embeddings=32768, | |
initializer_range=0.02, | |
rms_norm_eps=1e-05, | |
use_cache=True, | |
tie_word_embeddings=False, | |
rope_theta=1000000.0, | |
use_sliding_window=False, | |
sliding_window=4096, | |
max_window_layers=80, | |
attention_dropout=0.0, | |
rope_scaling=None, | |
spatial_merge_size=2, | |
attn_implementation='flash_attention_2', | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
self.max_position_embeddings = max_position_embeddings | |
self.hidden_size = hidden_size | |
self.intermediate_size = intermediate_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.use_sliding_window = use_sliding_window | |
self.sliding_window = sliding_window | |
self.max_window_layers = max_window_layers | |
# for backward compatibility | |
if num_key_value_heads is None: | |
num_key_value_heads = num_attention_heads | |
self.num_key_value_heads = num_key_value_heads | |
self.hidden_act = hidden_act | |
self.initializer_range = initializer_range | |
self.rms_norm_eps = rms_norm_eps | |
self.use_cache = use_cache | |
self.rope_theta = rope_theta | |
self.attention_dropout = attention_dropout | |
self.rope_scaling = rope_scaling | |
self.spatial_merge_size = spatial_merge_size | |
self.attn_implementation = attn_implementation | |
# Validate the correctness of rotary position embeddings parameters | |
# BC: if there is a 'type' field, move it to 'rope_type'. | |
# and change type from 'mrope' to 'default' because `mrope` does defeault RoPE calculations | |
# one can set it to "linear"/"dynamic" etc. to have scaled RoPE | |
# TODO: @raushan update config in the hub | |
if self.rope_scaling is not None and "type" in self.rope_scaling: | |
if self.rope_scaling["type"] == "mrope": | |
self.rope_scaling["type"] = "default" | |
self.rope_scaling["rope_type"] = self.rope_scaling["type"] | |
rope_config_validation(self, ignore_keys={"mrope_section"}) | |
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs) | |
# Copied from transformers.models.llama.modeling_llama.rotate_half | |
def rotate_half(x): | |
"""Rotates half the hidden dims of the input.""" | |
x1 = x[..., : x.shape[-1] // 2] | |
x2 = x[..., x.shape[-1] // 2 :] | |
return torch.cat((-x2, x1), dim=-1) | |
def apply_multimodal_rotary_pos_emb(q, k, cos, sin, mrope_section, unsqueeze_dim=1): | |
"""Applies Rotary Position Embedding with Multimodal Sections to the query and key tensors (https://qwenlm.github.io/blog/qwen2-vl/). | |
Explanation: | |
Multimodal 3D rotary position embedding is an extension to 1D rotary position embedding. The input embedding | |
sequence contains vision (images / videos) embedding and text embedding or just contains text embedding. For | |
vision embedding part, we apply rotary position embedding on temporal, height and width dimension seperately. | |
Here we split the channel dimension to 3 chunks for the temporal, height and width rotary position embedding. | |
For text embedding part, we just apply 1D rotary position embedding. The three rotary position index (temporal, | |
height and width) of text embedding is always the same, so the text embedding rotary position embedding has no | |
difference with modern LLMs. | |
Args: | |
q (`torch.Tensor`): The query tensor. | |
k (`torch.Tensor`): The key tensor. | |
cos (`torch.Tensor`): The cosine part of the rotary embedding. | |
sin (`torch.Tensor`): The sine part of the rotary embedding. | |
position_ids (`torch.Tensor`): | |
The position indices of the tokens corresponding to the query and key tensors. For example, this can be | |
used to pass offsetted position ids when working with a KV-cache. | |
mrope_section(`List(int)`): | |
Multimodal rope section is for channel dimension of temporal, height and width in rope calculation. | |
unsqueeze_dim (`int`, *optional*, defaults to 1): | |
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | |
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | |
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | |
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | |
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | |
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | |
Returns: | |
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | |
""" | |
mrope_section = mrope_section * 2 | |
cos = torch.cat([m[i % 3] for i, m in enumerate(cos.split(mrope_section, dim=-1))], dim=-1).unsqueeze( | |
unsqueeze_dim | |
) | |
sin = torch.cat([m[i % 3] for i, m in enumerate(sin.split(mrope_section, dim=-1))], dim=-1).unsqueeze( | |
unsqueeze_dim | |
) | |
q_embed = (q * cos) + (rotate_half(q) * sin) | |
k_embed = (k * cos) + (rotate_half(k) * sin) | |
return q_embed, k_embed | |
def apply_rotary_pos_emb_vision(tensor: torch.Tensor, freqs: torch.Tensor) -> torch.Tensor: | |
orig_dtype = tensor.dtype | |
tensor = tensor.float() | |
cos = freqs.cos() | |
sin = freqs.sin() | |
cos = cos.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float() | |
sin = sin.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float() | |
output = (tensor * cos) + (rotate_half(tensor) * sin) | |
output = output.to(orig_dtype) | |
return output | |
class VisionRotaryEmbedding(nn.Module): | |
def __init__(self, dim: int, theta: float = 10000.0) -> None: | |
super().__init__() | |
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim)) | |
self.register_buffer("inv_freq", inv_freq, persistent=False) | |
def forward(self, seqlen: int) -> torch.Tensor: | |
seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype) | |
freqs = torch.outer(seq, self.inv_freq) | |
return freqs | |
class PatchEmbed(nn.Module): | |
def __init__( | |
self, | |
patch_size: int = 14, | |
temporal_patch_size: int = 2, | |
in_channels: int = 3, | |
embed_dim: int = 1152, | |
) -> None: | |
super().__init__() | |
self.patch_size = patch_size | |
self.temporal_patch_size = temporal_patch_size | |
self.in_channels = in_channels | |
self.embed_dim = embed_dim | |
kernel_size = [temporal_patch_size, patch_size, patch_size] | |
self.proj = nn.Conv3d(in_channels, embed_dim, kernel_size=kernel_size, stride=kernel_size, bias=False) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
target_dtype = self.proj.weight.dtype | |
hidden_states = hidden_states.view( | |
-1, self.in_channels, self.temporal_patch_size, self.patch_size, self.patch_size | |
) | |
hidden_states = self.proj(hidden_states.to(dtype=target_dtype)).view(-1, self.embed_dim) | |
return hidden_states | |
class PatchMerger(nn.Module): | |
def __init__(self, dim: int, context_dim: int, spatial_merge_size: int = 2) -> None: | |
super().__init__() | |
self.hidden_size = context_dim * (spatial_merge_size**2) | |
self.ln_q = LayerNorm(context_dim, eps=1e-6) | |
self.mlp = nn.Sequential( | |
nn.Linear(self.hidden_size, self.hidden_size), | |
nn.GELU(), | |
nn.Linear(self.hidden_size, dim), | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.mlp(self.ln_q(x).view(-1, self.hidden_size)) | |
return x | |
class VisionMlp(nn.Module): | |
def __init__(self, dim: int, hidden_dim: int, hidden_act: str) -> None: | |
super().__init__() | |
self.fc1 = nn.Linear(dim, hidden_dim) | |
self.act = ACT2FN[hidden_act] | |
self.fc2 = nn.Linear(hidden_dim, dim) | |
def forward(self, x) -> torch.Tensor: | |
return self.fc2(self.act(self.fc1(x))) | |
class VisionAttention(nn.Module): | |
def __init__(self, dim: int, num_heads: int = 16) -> None: | |
super().__init__() | |
self.num_heads = num_heads | |
self.head_dim = dim // num_heads | |
self.qkv = nn.Linear(dim, dim * 3, bias=True) | |
self.proj = nn.Linear(dim, dim) | |
def forward( | |
self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor = None | |
) -> torch.Tensor: | |
seq_length = hidden_states.shape[0] | |
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0) | |
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0) | |
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0) | |
attention_mask = torch.full( | |
[1, seq_length, seq_length], torch.finfo(q.dtype).min, device=q.device, dtype=q.dtype | |
) | |
for i in range(1, len(cu_seqlens)): | |
attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = 0 | |
q = q.transpose(0, 1) | |
k = k.transpose(0, 1) | |
v = v.transpose(0, 1) | |
attn_weights = torch.matmul(q, k.transpose(1, 2)) / math.sqrt(self.head_dim) | |
attn_weights = attn_weights + attention_mask | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q.dtype) | |
attn_output = torch.matmul(attn_weights, v) | |
attn_output = attn_output.transpose(0, 1) | |
attn_output = attn_output.reshape(seq_length, -1) | |
attn_output = self.proj(attn_output) | |
return attn_output | |
class VisionFlashAttention2(nn.Module): | |
def __init__(self, dim: int, num_heads: int = 16) -> None: | |
super().__init__() | |
self.num_heads = num_heads | |
self.qkv = nn.Linear(dim, dim * 3, bias=True) | |
self.proj = nn.Linear(dim, dim) | |
def forward( | |
self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor = None | |
) -> torch.Tensor: | |
seq_length = hidden_states.shape[0] | |
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0) | |
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0) | |
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0) | |
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item() | |
attn_output = flash_attn_varlen_func(q, k, v, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen).reshape( | |
seq_length, -1 | |
) | |
attn_output = self.proj(attn_output) | |
return attn_output | |
QWEN2_VL_VISION_ATTENTION_CLASSES = { | |
"eager": VisionAttention, | |
"flash_attention_2": VisionFlashAttention2, | |
} | |
class Qwen2VLVisionBlock(nn.Module): | |
def __init__(self, config, attn_implementation: str = "sdpa") -> None: | |
super().__init__() | |
self.norm1 = LayerNorm(config.embed_dim, eps=1e-6) | |
self.norm2 = LayerNorm(config.embed_dim, eps=1e-6) | |
mlp_hidden_dim = int(config.embed_dim * config.mlp_ratio) | |
self.attn = QWEN2_VL_VISION_ATTENTION_CLASSES[attn_implementation]( | |
config.embed_dim, num_heads=config.num_heads | |
) | |
self.mlp = VisionMlp(dim=config.embed_dim, hidden_dim=mlp_hidden_dim, hidden_act=config.hidden_act) | |
def forward(self, hidden_states, cu_seqlens, rotary_pos_emb) -> torch.Tensor: | |
hidden_states = hidden_states + self.attn( | |
self.norm1(hidden_states), cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb | |
) | |
hidden_states = hidden_states + self.mlp(self.norm2(hidden_states)) | |
return hidden_states | |
class Qwen2VLPreTrainedModel(PreTrainedModel): | |
config_class = Qwen2VLConfig | |
base_model_prefix = "model" | |
supports_gradient_checkpointing = True | |
_no_split_modules = ["Qwen2VLDecoderLayer", "Qwen2VLVisionBlock"] | |
_skip_keys_device_placement = "past_key_values" | |
_supports_flash_attn_2 = True | |
_supports_sdpa = False | |
_supports_cache_class = True | |
_supports_static_cache = True | |
def _init_weights(self, module): | |
std = self.config.initializer_range | |
if isinstance(module, (nn.Linear, nn.Conv3d)): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
class Qwen2VisionTransformerPretrainedModel(Qwen2VLPreTrainedModel): | |
config_class = Qwen2VLVisionConfig | |
_no_split_modules = ["Qwen2VLVisionBlock"] | |
def __init__(self, config) -> None: | |
super().__init__(config) | |
self.spatial_merge_size = config.spatial_merge_size | |
self.patch_embed = PatchEmbed( | |
patch_size=config.patch_size, | |
temporal_patch_size=config.temporal_patch_size, | |
in_channels=config.in_channels, | |
embed_dim=config.embed_dim, | |
) | |
head_dim = config.embed_dim // config.num_heads | |
self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2) | |
self.blocks = nn.ModuleList( | |
[Qwen2VLVisionBlock(config, config.attn_implementation) for _ in range(config.depth)] | |
) | |
self.merger = PatchMerger( | |
dim=config.hidden_size, context_dim=config.embed_dim, spatial_merge_size=config.spatial_merge_size | |
) | |
# Initialize weights and apply final processing | |
self.gradient_checkpointing = False | |
self.post_init() | |
def get_dtype(self) -> torch.dtype: | |
return self.blocks[0].mlp.fc2.weight.dtype | |
def get_device(self) -> torch.device: | |
return self.blocks[0].mlp.fc2.weight.device | |
def rot_pos_emb(self, grid_thw): | |
pos_ids = [] | |
for t, h, w in grid_thw: | |
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w) | |
hpos_ids = hpos_ids.reshape( | |
h // self.spatial_merge_size, | |
self.spatial_merge_size, | |
w // self.spatial_merge_size, | |
self.spatial_merge_size, | |
) | |
hpos_ids = hpos_ids.permute(0, 2, 1, 3) | |
hpos_ids = hpos_ids.flatten() | |
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1) | |
wpos_ids = wpos_ids.reshape( | |
h // self.spatial_merge_size, | |
self.spatial_merge_size, | |
w // self.spatial_merge_size, | |
self.spatial_merge_size, | |
) | |
wpos_ids = wpos_ids.permute(0, 2, 1, 3) | |
wpos_ids = wpos_ids.flatten() | |
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1)) | |
pos_ids = torch.cat(pos_ids, dim=0) | |
max_grid_size = grid_thw[:, 1:].max() | |
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size) | |
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1) | |
return rotary_pos_emb | |
def forward(self, hidden_states: torch.Tensor, grid_thw: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.patch_embed(hidden_states) | |
rotary_pos_emb = self.rot_pos_emb(grid_thw) | |
cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum( | |
dim=0, dtype=torch.int32 | |
) | |
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0) | |
for blk in self.blocks: | |
if self.gradient_checkpointing and self.training: | |
hidden_states = self._gradient_checkpointing_func( | |
blk.__call__, | |
hidden_states, | |
cu_seqlens, | |
rotary_pos_emb, | |
) | |
else: | |
hidden_states = blk(hidden_states, cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb) | |
return self.merger(hidden_states) | |
# class Qwen2RMSNorm(nn.Module): | |
# def __init__(self, hidden_size, eps=1e-6): | |
# """ | |
# Qwen2RMSNorm is equivalent to T5LayerNorm | |
# """ | |
# super().__init__() | |
# self.weight = nn.Parameter(torch.ones(hidden_size)) | |
# self.variance_epsilon = eps | |
# self.normalized_shape = torch.Size((hidden_size, )) | |
# def forward(self, hidden_states): | |
# return fused_rms_norm_affine(input=hidden_states, | |
# weight=self.weight, | |
# normalized_shape=self.normalized_shape, | |
# eps=self.variance_epsilon, | |
# memory_efficient=True) | |
class Qwen2RMSNorm(nn.Module): | |
def __init__(self, hidden_size, eps=1e-6): | |
""" | |
Qwen2RMSNorm is equivalent to T5LayerNorm | |
""" | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(hidden_size)) | |
self.variance_epsilon = eps | |
def forward(self, hidden_states): | |
input_dtype = hidden_states.dtype | |
hidden_states = hidden_states.to(torch.float32) | |
variance = hidden_states.pow(2).mean(-1, keepdim=True) | |
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | |
return self.weight * hidden_states.to(input_dtype) | |
def extra_repr(self): | |
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" | |
class Qwen2VLRotaryEmbedding(nn.Module): | |
def __init__( | |
self, | |
dim=None, | |
max_position_embeddings=2048, | |
base=10000, | |
device=None, | |
scaling_factor=1.0, | |
rope_type="default", | |
config: Optional[Qwen2VLConfig] = None, | |
): | |
super().__init__() | |
# TODO (joao): remove the `if` below, only used for BC | |
self.rope_kwargs = {} | |
if config is None: | |
logger.warning_once( | |
"`Qwen2VLRotaryEmbedding` can now be fully parameterized by passing the model config through the " | |
"`config` argument. All other arguments will be removed in v4.46" | |
) | |
self.rope_kwargs = { | |
"rope_type": rope_type, | |
"factor": scaling_factor, | |
"dim": dim, | |
"base": base, | |
"max_position_embeddings": max_position_embeddings, | |
} | |
self.rope_type = rope_type | |
self.max_seq_len_cached = max_position_embeddings | |
self.original_max_seq_len = max_position_embeddings | |
else: | |
# BC: "rope_type" was originally "type" | |
if config.rope_scaling is not None: | |
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) | |
else: | |
self.rope_type = "default" | |
self.max_seq_len_cached = config.max_position_embeddings | |
self.original_max_seq_len = config.max_position_embeddings | |
self.config = config | |
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] | |
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs) | |
self.register_buffer("inv_freq", inv_freq, persistent=False) | |
self.original_inv_freq = self.inv_freq | |
def _dynamic_frequency_update(self, position_ids, device): | |
""" | |
dynamic RoPE layers should recompute `inv_freq` in the following situations: | |
1 - growing beyond the cached sequence length (allow scaling) | |
2 - the current sequence length is in the original scale (avoid losing precision with small sequences) | |
""" | |
seq_len = torch.max(position_ids) + 1 | |
if seq_len > self.max_seq_len_cached: # growth | |
inv_freq, self.attention_scaling = self.rope_init_fn( | |
self.config, device, seq_len=seq_len, **self.rope_kwargs | |
) | |
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation | |
self.max_seq_len_cached = seq_len | |
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset | |
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False) | |
self.max_seq_len_cached = self.original_max_seq_len | |
def forward(self, x, position_ids): | |
position_ids = position_ids.permute(2, 0, 1) | |
if "dynamic" in self.rope_type: | |
self._dynamic_frequency_update(position_ids, device=x.device) | |
# Core RoPE block. In contrast to other models, Qwen2_VL has different position ids for thw grids | |
# So we expand the inv_freq to shape (3, ...) | |
inv_freq_expanded = self.inv_freq[None, None, :, None].float().expand(3, position_ids.shape[1], -1, 1) | |
position_ids_expanded = position_ids[:, :, None, :].float() # shape (3, bs, 1, positions) | |
# Force float32 (see https://github.com/huggingface/transformers/pull/29285) | |
device_type = x.device.type | |
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" | |
with torch.autocast(device_type=device_type, enabled=False): | |
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(2, 3) | |
emb = torch.cat((freqs, freqs), dim=-1) | |
cos = emb.cos() | |
sin = emb.sin() | |
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention | |
cos = cos * self.attention_scaling | |
sin = sin * self.attention_scaling | |
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) | |
# Copied from transformers.models.qwen2.modeling_qwen2.Qwen2MLP | |
class Qwen2MLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.hidden_size = config.hidden_size | |
self.intermediate_size = config.intermediate_size | |
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | |
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | |
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) | |
self.act_fn = ACT2FN[config.hidden_act] | |
def forward(self, hidden_state): | |
return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state)) | |
# Copied from transformers.models.llama.modeling_llama.repeat_kv | |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | |
""" | |
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | |
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | |
""" | |
batch, num_key_value_heads, slen, head_dim = hidden_states.shape | |
if n_rep == 1: | |
return hidden_states | |
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | |
class Qwen2VLAttention(nn.Module): | |
""" | |
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer | |
and "Generating Long Sequences with Sparse Transformers". | |
""" | |
def __init__(self, config: Qwen2VLConfig, layer_idx: Optional[int] = None): | |
super().__init__() | |
self.config = config | |
self.layer_idx = layer_idx | |
if layer_idx is None: | |
logger.warning_once( | |
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " | |
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " | |
"when creating this class." | |
) | |
self.hidden_size = config.hidden_size | |
self.num_heads = config.num_attention_heads | |
self.head_dim = self.hidden_size // self.num_heads | |
self.num_key_value_heads = config.num_key_value_heads | |
self.num_key_value_groups = self.num_heads // self.num_key_value_heads | |
self.max_position_embeddings = config.max_position_embeddings | |
self.rope_theta = config.rope_theta | |
self.is_causal = True | |
self.attention_dropout = config.attention_dropout | |
self.rope_scaling = config.rope_scaling | |
if (self.head_dim * self.num_heads) != self.hidden_size: | |
raise ValueError( | |
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" | |
f" and `num_heads`: {self.num_heads})." | |
) | |
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True) | |
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) | |
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) | |
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) | |
class Qwen2VLFlashAttention2(Qwen2VLAttention): | |
""" | |
Qwen2VL flash attention module, following Qwen2VL attention module. This module inherits from `Qwen2VLAttention` | |
as the weights of the module stays untouched. The only required change would be on the forward pass | |
where it needs to correctly call the public API of flash attention and deal with padding tokens | |
in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom | |
config.max_window_layers layers. | |
""" | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. | |
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. | |
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). | |
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Cache] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46 | |
use_rmpad: Optional[bool] = False, | |
cu_seqlens: Optional[torch.Tensor] = False, | |
): | |
""" | |
Train: | |
unpad: (bsz, q_len) = (1, acc_seqlen) | |
pad: (bsz, q_len) = (bsz, q_len) | |
Test: | |
first_iter: (bsz, q_len) = (bsz, q_len) | |
other: (bsz, q_len) = (bsz, 1) | |
""" | |
bsz, q_len, _ = hidden_states.size() | |
query_states = self.q_proj(hidden_states) | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
cos, sin = position_embeddings | |
query_states, key_states = apply_multimodal_rotary_pos_emb( | |
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"] | |
) | |
if past_key_value is not None: | |
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models | |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
# repeat k/v heads if n_kv_heads < n_heads | |
key_states = repeat_kv(key_states, self.num_key_value_groups) | |
value_states = repeat_kv(value_states, self.num_key_value_groups) | |
dropout_rate = 0.0 if not self.training else self.attention_dropout | |
# In PEFT, usually we cast the layer norms in float32 for training stability reasons | |
# therefore the input hidden states gets silently casted in float32. Hence, we need | |
# cast them back in float16 just to be sure everything works as expected. | |
input_dtype = query_states.dtype | |
if input_dtype == torch.float32: | |
if torch.is_autocast_enabled(): | |
target_dtype = torch.get_autocast_gpu_dtype() | |
# Handle the case where the model is quantized | |
elif hasattr(self.config, "_pre_quantization_dtype"): | |
target_dtype = self.config._pre_quantization_dtype | |
else: | |
target_dtype = self.q_proj.weight.dtype | |
logger.warning_once( | |
f"The input hidden states seems to be silently casted in float32, this might be related to" | |
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | |
f" {target_dtype}." | |
) | |
query_states = query_states.to(target_dtype) | |
key_states = key_states.to(target_dtype) | |
value_states = value_states.to(target_dtype) | |
# Reashape to the expected shape for Flash Attention | |
query_states = query_states.transpose(1, 2) | |
key_states = key_states.transpose(1, 2) | |
value_states = value_states.transpose(1, 2) | |
if use_rmpad: | |
max_seqlen = torch.max(cu_seqlens[1:] - cu_seqlens[:-1]).item() | |
attn_output = flash_attn_varlen_func( | |
query_states.squeeze(0), key_states.squeeze(0), value_states.squeeze(0), | |
cu_seqlens_q=cu_seqlens, cu_seqlens_k=cu_seqlens, | |
max_seqlen_q=max_seqlen, max_seqlen_k=max_seqlen, | |
dropout_p=dropout_rate, | |
causal=self.is_causal, window_size=(-1, -1), | |
) | |
else: | |
attn_output = _flash_attention_forward( | |
query_states, key_states, value_states, | |
attention_mask, | |
q_len, | |
dropout=dropout_rate, | |
sliding_window=None, | |
is_causal=self.is_causal, | |
use_top_left_mask=self._flash_attn_uses_top_left_mask, | |
) | |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() | |
attn_output = self.o_proj(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, past_key_value | |
QWEN2_VL_ATTENTION_CLASSES = { | |
"flash_attention_2": Qwen2VLFlashAttention2, | |
} | |
class Qwen2VLDecoderLayer(nn.Module): | |
def __init__(self, config: Qwen2VLConfig, layer_idx: int): | |
super().__init__() | |
self.hidden_size = config.hidden_size | |
if config.attn_implementation != "flash_attention_2": | |
logger.error( | |
f"只支持 flash_attention_2!config.attn_implementation={config.attn_implementation}" | |
) | |
self.self_attn = QWEN2_VL_ATTENTION_CLASSES[config.attn_implementation](config, layer_idx) | |
self.mlp = Qwen2MLP(config) | |
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
output_attentions: Optional[bool] = False, | |
use_cache: Optional[bool] = False, | |
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46 | |
use_rmpad: Optional[bool] = False, | |
cu_seqlens: Optional[torch.Tensor] = False, | |
**kwargs, | |
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | |
""" | |
Args: | |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size | |
`(batch, sequence_length)` where padding elements are indicated by 0. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | |
(see `past_key_values`). | |
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | |
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): | |
Indices depicting the position of the input sequence tokens in the sequence. | |
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): | |
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, | |
with `head_dim` being the embedding dimension of each attention head. | |
kwargs (`dict`, *optional*): | |
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code | |
into the model | |
""" | |
residual = hidden_states | |
hidden_states = self.input_layernorm(hidden_states) | |
# Self Attention | |
hidden_states, self_attn_weights, present_key_value = self.self_attn( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
position_embeddings=position_embeddings, | |
use_rmpad=use_rmpad, | |
cu_seqlens=cu_seqlens, | |
) | |
hidden_states = residual + hidden_states | |
# Fully Connected | |
residual = hidden_states | |
hidden_states = self.post_attention_layernorm(hidden_states) | |
hidden_states = self.mlp(hidden_states) | |
hidden_states = residual + hidden_states | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (self_attn_weights,) | |
if use_cache: | |
outputs += (present_key_value,) | |
return outputs | |
class Qwen2VLModel(Qwen2VLPreTrainedModel): | |
def __init__(self, config: Qwen2VLConfig): | |
super().__init__(config) | |
self.padding_idx = config.pad_token_id | |
self.vocab_size = config.vocab_size | |
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) | |
self.layers = nn.ModuleList([Qwen2VLDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]) | |
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
self.rotary_emb = Qwen2VLRotaryEmbedding(config=config) | |
self.gradient_checkpointing = False | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embed_tokens | |
def set_input_embeddings(self, value): | |
self.embed_tokens = value | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
use_rmpad: Optional[bool] = False, | |
cu_seqlens: Optional[torch.Tensor] = False, | |
) -> Union[Tuple, BaseModelOutputWithPast]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if (input_ids is None) ^ (inputs_embeds is not None): | |
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning_once( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
hidden_states = inputs_embeds | |
# create position embeddings to be shared across the decoder layers | |
position_embeddings = self.rotary_emb(hidden_states, position_ids) | |
# decoder layers | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attns = () if output_attentions else None | |
next_decoder_cache = None | |
for decoder_layer in self.layers: | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
decoder_layer.__call__, | |
hidden_states, | |
attention_mask, | |
position_ids, | |
past_key_values, | |
output_attentions, | |
use_cache, | |
position_embeddings, | |
use_rmpad, | |
cu_seqlens, | |
) | |
else: | |
layer_outputs = decoder_layer( | |
hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_values, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
position_embeddings=position_embeddings, | |
use_rmpad=use_rmpad, | |
cu_seqlens=cu_seqlens, | |
) | |
hidden_states = layer_outputs[0] | |
if use_cache: | |
next_decoder_cache = layer_outputs[2 if output_attentions else 1] | |
if output_attentions: | |
all_self_attns += (layer_outputs[1],) | |
hidden_states = self.norm(hidden_states) | |
# add hidden states from the last decoder layer | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
next_cache = next_decoder_cache if use_cache else None | |
if not return_dict: | |
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) | |
return BaseModelOutputWithPast( | |
last_hidden_state=hidden_states, | |
past_key_values=next_cache, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attns, | |
) | |
class Qwen2VLForCausalLM(Qwen2VLPreTrainedModel, GenerationMixin): | |
_tied_weights_keys = ["lm_head.weight"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.model = Qwen2VLModel(config) | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
self.padding_side = "left" # set it to left by default, user can use setter to change padding_sides | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.model.embed_tokens | |
def set_input_embeddings(self, value): | |
self.model.embed_tokens = value | |
def get_output_embeddings(self): | |
return self.lm_head | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head = new_embeddings | |
def set_decoder(self, decoder): | |
self.model = decoder | |
def get_decoder(self): | |
return self.model | |
def get_rope_index( | |
self, | |
input_ids: torch.LongTensor, | |
image_grid_thw: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
Calculate the 3D rope index based on image and video's temporal, height and width in LLM. | |
Explanation: | |
Each embedding sequence contains vision embedding and text embedding or just contains text embedding. | |
For pure text embedding sequence, the rotary position embedding has no difference with mordern LLMs. | |
Examples: | |
input_ids: [T T T T T], here T is for text. | |
temporal position_ids: [0, 1, 2, 3, 4] | |
height position_ids: [0, 1, 2, 3, 4] | |
width position_ids: [0, 1, 2, 3, 4] | |
For vision and text embedding sequence, we calculate 3D rotary position embedding for vision part | |
and 1D rotary position embeddin for text part. | |
Examples: | |
Assume we have a video input with 3 temporal patches, 2 height patches and 2 width patches. | |
input_ids: [V V V V V V V V V V V V T T T T T], here V is for vision. | |
vision temporal position_ids: [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2] | |
vision height position_ids: [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1] | |
vision width position_ids: [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1] | |
text temporal position_ids: [3, 4, 5, 6, 7] | |
text height position_ids: [3, 4, 5, 6, 7] | |
text width position_ids: [3, 4, 5, 6, 7] | |
Here we calculate the text start position_ids as the max vision position_ids plus 1. | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
it. | |
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*): | |
The temporal, height and width of feature shape of each image in LLM. | |
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*): | |
The temporal, height and width of feature shape of each video in LLM. | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
Returns: | |
position_ids (`torch.LongTensor` of shape `(3, batch_size, sequence_length)`) | |
mrope_position_deltas (`torch.Tensor` of shape `(batch_size)`) | |
""" | |
spatial_merge_size = self.config.spatial_merge_size | |
vision_token_id = self.config.image_token_id | |
vision_start_token_id = self.config.vision_start_token_id | |
assert image_grid_thw is not None # TODO:测试纯文本会不会卡住 | |
total_input_ids = input_ids | |
position_ids = torch.ones( | |
3, input_ids.shape[0], input_ids.shape[1], dtype=input_ids.dtype, device=input_ids.device | |
) | |
vision_index = 0 | |
for i, input_ids in enumerate(total_input_ids): | |
if attention_mask is not None: | |
input_ids = input_ids[attention_mask[i] == 1] | |
vision_start_indices = torch.argwhere(input_ids == vision_start_token_id).squeeze(1) | |
vision_num = (input_ids[vision_start_indices + 1] == vision_token_id).sum() | |
input_tokens = input_ids.tolist() | |
llm_pos_ids_list: list = [] | |
st = 0 | |
remain_vision_num = vision_num | |
for _ in range(vision_num): | |
if vision_token_id in input_tokens and remain_vision_num > 0: | |
ed_vision = input_tokens.index(vision_token_id, st) | |
else: | |
ed_vision = len(input_tokens) + 1 | |
t, h, w = ( | |
image_grid_thw[vision_index][0], | |
image_grid_thw[vision_index][1], | |
image_grid_thw[vision_index][2], | |
) | |
vision_index += 1 | |
remain_vision_num -= 1 | |
ed = ed_vision | |
llm_grid_t, llm_grid_h, llm_grid_w = ( | |
t.item(), | |
h.item() // spatial_merge_size, | |
w.item() // spatial_merge_size, | |
) | |
text_len = ed - st | |
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0 | |
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx) | |
t_index = torch.arange(llm_grid_t).view(-1, 1).expand(-1, llm_grid_h * llm_grid_w).flatten() | |
h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(llm_grid_t, -1, llm_grid_w).flatten() | |
w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(llm_grid_t, llm_grid_h, -1).flatten() | |
llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]) + text_len + st_idx) | |
st = ed + llm_grid_t * llm_grid_h * llm_grid_w | |
if st < len(input_tokens): | |
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0 | |
text_len = len(input_tokens) - st | |
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx) | |
llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1) | |
position_ids[..., i, attention_mask[i] == 1] = llm_positions.to(position_ids.device) | |
position_ids = position_ids.permute(1, 2, 0) | |
return position_ids | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
use_rmpad: Optional[bool] = False, | |
cu_seqlens: Optional[torch.Tensor] = False, | |
) -> Union[Tuple, Qwen2VLCausalLMOutputWithPast]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
use_rmpad=use_rmpad, | |
cu_seqlens=cu_seqlens, | |
) | |
hidden_states = outputs[0] | |
logits = self.lm_head(hidden_states) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return output | |
return Qwen2VLCausalLMOutputWithPast( | |
logits=logits, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |