File size: 8,496 Bytes
97a05c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcd4560
 
 
97a05c0
 
 
 
 
dcd4560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97a05c0
 
 
 
 
 
 
 
 
dcd4560
 
 
 
97a05c0
 
dcd4560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97a05c0
dcd4560
 
 
 
 
 
 
 
 
 
 
 
 
 
97a05c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcd4560
97a05c0
 
 
 
dcd4560
97a05c0
 
 
dcd4560
97a05c0
 
dcd4560
 
 
97a05c0
dcd4560
 
 
 
 
 
 
 
 
 
 
 
97a05c0
dcd4560
97a05c0
 
 
 
 
 
 
 
 
 
 
 
 
dcd4560
97a05c0
 
dcd4560
 
 
 
97a05c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcd4560
97a05c0
dcd4560
97a05c0
 
 
 
 
dcd4560
97a05c0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# Copyright (2024) Bytedance Ltd. and/or its affiliates

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# copy and modify from: https://github.com/OpenGVLab/Ask-Anything/blob/main/video_chat2/conversation.py
from PIL import Image
import torch
from transformers import StoppingCriteria, StoppingCriteriaList
from dataset.custom_data_parsers.utils import put_pred_to_data_dict, get_prompt_from_data_dict
from dataset.tarsier_datamodule import TarsierDataProcessor
from dataset.utils import *

from enum import auto, Enum
import os
import re

data_dict_tmp = {
    "messages": [
        {
            "role": "user", 
            "content": [
                {
                    "type": "video", 
                    "video": {
                        "video_file": "/mnt/hdfs/vlm/videos/movies_aligned_0523/tt8266310/tt8266310_1.50.24-1.50.29.mp4"}
                },
                {
                    "type": "text", 
                    "text": "Describe the video in detail."
                }
            ]
        }, 
        {
            "role": "assistant", 
            "content": [
                {
                    "type": "text", 
                    "text": "A man in the driver's seat, wearing a black jacket with a maroon shirt, fastens his seatbelt while smiling at the man in the passenger seat, who is adjusting his position. The passenger, also wearing a black jacket with a maroon shirt, turns to look forward and smiles. The driver then leans forward to start the car and leans back in his seat. In the background, a beige car is visible through the window."
            }]}
    ], 
    "dataset": "video_caption", 
    "task": "video/caption", 
    "idx": 0, 
}


IMAGE_TOKEN = "<image>"
VIDEO_TOKEN = "<video>"

class SeparatorStyle(Enum):
    """Different separator style."""
    SINGLE = auto()
    TWO = auto()

def get_data_dict(conv, max_n_frames=None):
    data_dict = {
        "messages": []
    }
    for i, (role, message) in enumerate(conv.messages):
        if message:
            text = message["text"]
            content_type = message["type"]
            content = {}
            if content_type == "text":
                content['type'] = 'text'
                content['text'] = text
                task = "text-only"
            elif content_type == "video":
                content['type'] = 'video'
                content['video'] = {
                    "video_file": text
                }
                if max_n_frames is not None:
                    content['video']['n_frames'] = max_n_frames
                task = "video/QA"
            elif content_type == "image":
                content['type'] = 'image'
                content['image'] = {
                    "image_file": text
                }
                task = "image/QA"
            else:
                content['type'] = 'text'
                content['text'] = text
                task = "text-only"
            if data_dict['messages'] and data_dict['messages'][-1]['role'] == role:
                data_dict['messages'][-1]['content'].append(content)
            else:
                data_dict['messages'].append({
                    "role": role,
                    "content": [content]
                })
    data_dict['dataset'] = task
    data_dict['task'] = task
    check_data_format(data_dict)
    return data_dict


class StoppingCriteriaSub(StoppingCriteria):
    def __init__(self, stops=[], encounters=1):
        super().__init__()
        self.stops = stops

    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
        for stop in self.stops:
            if torch.all((stop == input_ids[0][-len(stop):])).item():
                return True
        return False


class Chat:
    def __init__(self, model, processor: TarsierDataProcessor, device='cuda', debug=False):
        self.model = model
        self.processor = processor
        self.device = device
        self.debug = debug
        stop_words_ids = [torch.tensor([self.processor.processor.tokenizer.eos_token_id]).to(device)]
        self.stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])

    def ask(self,text,conv):
        conv.messages.append([conv.roles[0], {"text": text, "type": "text"}])
        return conv

    def prepare_model_inputs(self, conv, n_frames=None):
        # print(conv.messages)
        data_dict = get_data_dict(conv, n_frames)
        if self.debug:
            # print(f"visual_data_file: {visual_data_file}", flush=True)
            print(f"###Prompt:\n{get_prompt_from_data_dict(data_dict)}")

        batch_data = self.processor(data_dict)
        model_inputs = {}
        for k, v in batch_data.items():
            if not isinstance(v, torch.Tensor):
                continue
            model_inputs[k] = v.to(self.device)
        return model_inputs, conv

    def answer(self, conv, n_frames=None, max_new_tokens=256, num_beams=1, min_length=1, top_p=1.0,
               repetition_penalty=1.0, length_penalty=1, temperature=0):
        inputs, conv = self.prepare_model_inputs(conv, n_frames)
        if self.model is not None:
            outputs = self.model.generate(
                **inputs,
                max_new_tokens=max_new_tokens,
                stopping_criteria=self.stopping_criteria,
                num_beams=num_beams,
                do_sample=True if temperature > 0 else False,
                min_length=min_length,
                top_p=top_p,
                repetition_penalty=repetition_penalty,
                length_penalty=length_penalty,
                temperature=temperature,
            )
            output_text = self.processor.processor.tokenizer.decode(outputs[0][inputs['input_ids'][0].shape[0]:], skip_special_tokens=True)
        else:
            output_text = "Fake respone as launched in debug mode!"
        conv.messages.append(
            [conv.roles[1], {"text": output_text, "type": "text"}]
        )
        return output_text, conv

class EasyDict(dict):
    """
    Get attributes

    >>> d = EasyDict({'foo':3})
    >>> d['foo']
    3
    >>> d.foo
    3
    >>> d.bar
    Traceback (most recent call last):
    ...
    AttributeError: 'EasyDict' object has no attribute 'bar'

    Works recursively

    >>> d = EasyDict({'foo':3, 'bar':{'x':1, 'y':2}})
    >>> isinstance(d.bar, dict)
    True
    >>> d.bar.x
    1
    """

    def __init__(self, d=None, **kwargs):
        if d is None:
            d = {}
        if kwargs:
            d.update(**kwargs)
        for k, v in d.items():
            setattr(self, k, v)
        # Class attributes
        for k in self.__class__.__dict__.keys():
            if not (k.startswith("__") and k.endswith("__")) and not k in ("update", "pop"):
                setattr(self, k, getattr(self, k))

    def __setattr__(self, name, value):
        if isinstance(value, (list, tuple)):
            value = [self.__class__(x) if isinstance(x, dict) else x for x in value]
        elif isinstance(value, dict) and not isinstance(value, self.__class__):
            value = self.__class__(value)
        super(EasyDict, self).__setattr__(name, value)
        super(EasyDict, self).__setitem__(name, value)

    __setitem__ = __setattr__

    def update(self, e=None, **f):
        d = e or dict()
        d.update(f)
        for k in d:
            setattr(self, k, d[k])

    def pop(self, k, d=None):
        if hasattr(self, k):
            delattr(self, k)
        return super(EasyDict, self).pop(k, d)

conv_tarsier = EasyDict({
    "system": "",
    "roles": ("USER", "ASSISTANT"),
    "messages": [],
    "sep1": " ",
    "sep2": "</s>",
}
)

conv_tarsier_yi = EasyDict({
    "system": "",
    "roles": ("USER", "ASSISTANT"),
    "messages": [],
    "sep1": " ",
    "sep2": "<|endoftext|>",
}
)

conv_tarsier_qwen2_vl = EasyDict({
    "system": "",
    "roles": ("user", "assistant"),
    "messages": [],
}
)

conv_templates = {
    "tarsier2-7b": conv_tarsier_qwen2_vl
}