Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,057 Bytes
97a05c0 dcd4560 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
# Copyright (2024) Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List
import os
from PIL import Image, ImageSequence
import decord
VALID_DATA_FORMAT_STRING = "Input data must be {'.jpg', '.jpeg', '.png', '.tif'} for image; or {'.mp4', '.avi', '.webm', '.mov', '.mkv', '.wmv', '.gif'} for videos!"
# 均匀抽帧,必采样首尾帧。
def sample_frame_indices(start_frame, total_frames: int, n_frames: int):
if n_frames == 1:
return [0] # sample first frame in default
sample_ids = [round(i * (total_frames - 1) / (n_frames - 1)) for i in range(n_frames)]
sample_ids = [i + start_frame for i in sample_ids]
return sample_ids
def sample_video(
video_path: str,
n_frames: int = None,
start_time: int = 0,
end_time: int = -1
) -> List[Image.Image]:
assert os.path.exists(video_path), f"File not found: {video_path}"
vr = decord.VideoReader(video_path, num_threads=1, ctx=decord.cpu(0))
vr.seek(0)
total_frames = len(vr)
fps = vr.get_avg_fps()
start_frame = 0
end_frame = total_frames - 1
if start_time > 0:
start_frame = min((total_frames-1), int(fps*start_time))
if end_time > 0:
end_frame = max(start_frame, int(fps*end_time))
end_frame = min(end_frame, (total_frames-1))
frame_indices = sample_frame_indices(
start_frame=start_frame,
total_frames=end_frame - start_frame + 1,
n_frames=n_frames,
)
frames = vr.get_batch(frame_indices).asnumpy()
frames = [Image.fromarray(f).convert('RGB') for f in frames]
return frames
def sample_gif(
gif_path: str,
n_frames:int = None,
start_time: int = 0,
end_time: int = -1
) -> List[Image.Image]:
assert os.path.exists(gif_path), f"File not found: {gif_path}"
gif_frames = Image.open(gif_path)
start_frame = 0
end_frame = gif_frames.n_frames - 1
frame_indices = sample_frame_indices(
start_frame=start_frame,
total_frames=end_frame - start_frame + 1,
n_frames=n_frames,
)
frames = []
i = 0
for frame in ImageSequence.Iterator(gif_frames):
if i in frame_indices:
frames.append(frame.convert('RGB'))
i += 1
return frames
def sample_image(
image_path: str,
n_frames: int = None,
start_time: int = 0,
end_time: int = -1
):
assert os.path.exists(image_path), f"File not found: {image_path}"
image = Image.open(image_path).convert('RGB')
return [image]
def get_visual_type(input_file):
ext = os.path.splitext(input_file)[-1]
if ext in {'.gif'}:
return 'gif'
elif ext in {'.mp4', '.avi', '.webm', '.mov', '.mkv', '.wmv'}:
return 'video'
elif ext in {'.jpg', '.jpeg', '.png', '.tif'}:
return 'image'
else:
print(f"{VALID_DATA_FORMAT_STRING} But found {ext}!")
return 'unk'
def get_benchmarks(benchmarks):
final_benchmarks = []
type2bm = {
'dream': ['dream'],
'caption': ['msvd-caption', 'msr-vtt-caption', 'vatex-caption'],
'mc_qa': ['next-qa', 'egoschema', 'mvbench', 'video-mme'],
'oe_qa': ['msvd-qa', 'msr-vtt-qa', 'tgif-qa', 'anet-qa'],
}
for bm in benchmarks:
bm = bm.lower()
if bm in final_benchmarks:
continue
if bm == 'all':
for v in type2bm.values():
final_benchmarks.extend(v)
return final_benchmarks
if bm in type2bm:
final_benchmarks.extend(type2bm[bm])
else:
final_benchmarks.append(bm)
return final_benchmarks
def check_data_format(data):
for msg in data['messages']:
if isinstance(msg['content'], dict):
msg['content'] = [msg['content']]
for content in msg['content']:
assert content['type'] in {'image', 'video', 'text'}, f"content['type']={content['type']} MUST be one of ['image', 'video', 'text']"
if content['type'] != "text":
media_path_key = f"{content['type']}_file"
meida_paths = content[content['type']][media_path_key]
if isinstance(meida_paths, str):
meida_paths = [meida_paths]
for path in meida_paths:
assert os.path.exists(path), f"File not found: {path}"
def format_one_sample(media_file=None, prompt="Describe the video in detail."):
sample = {
"messages": []
}
user_content = {
"role": "user",
"content": []
}
if media_file is not None:
media_type = get_visual_type(media_file)
if media_type in ("video", "gif"):
media_type = "video"
media_path_key = f"{media_type}_file"
user_content["content"].append({
"type": media_type,
media_type: {
media_path_key: media_file,
}
})
user_content["content"].append({
"type": "text",
"text": prompt
})
assistant_content = {
"role": "assistant",
"content": []
}
sample["messages"].append(user_content)
sample["messages"].append(assistant_content)
if media_file is not None:
sample["task"] = f"{media_type}/QA"
else:
sample["task"] = 'text-only'
check_data_format(sample)
return sample
class DictToObject(object):
def __init__(self, dictionary):
for key, value in dictionary.items():
setattr(self, key, value)
|