File size: 11,008 Bytes
dcd4560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
from typing import List, Union
from PIL import Image

import torch

from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput, get_image_size, to_numpy_array
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack, _validate_images_text_input_order
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
from transformers.utils import logging
from transformers import Qwen2VLImageProcessor
from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize

logger = logging.get_logger(__name__)


class TarsierProcessorKwargs(ProcessingKwargs, total=False):
    _defaults = {
        "text_kwargs": {},
        "images_kwargs": {},
    }


class TarsierProcessor(ProcessorMixin):

    attributes = ["image_processor", "tokenizer"]
    valid_kwargs = ["chat_template", "image_token", "patch_size", "merge_size", "temporal_patch_size", "max_seq_len"]
    image_processor_class = "AutoImageProcessor"
    tokenizer_class = "AutoTokenizer"

    def __init__(
                self,
                image_processor=None,
                tokenizer=None,
                chat_template=None,
                image_token="<image>",
                patch_size=None,
                merge_size=1,
                temporal_patch_size=1,
                max_seq_len=8192,
                **kwargs,
            ) -> None:
        
        self.image_token = image_token
        self.patch_size = patch_size
        self.merge_size = merge_size
        self.temporal_patch_size = temporal_patch_size
        self.max_seq_len = max_seq_len
        self.max_pixels_per_sample = 128 * 384 * 384

        super().__init__(image_processor, tokenizer, chat_template=chat_template)

    def __call__(
            self, 
            messages,
            image_processing_config=None,
            is_training=True,
        ) -> torch.Tensor:

        output_kwargs = self._merge_kwargs(
            TarsierProcessorKwargs,
            tokenizer_init_kwargs=self.tokenizer.init_kwargs,
        )

        # 【图片处理】
        pixel_values, image_grid_thw = [], []
        num_images = 0
        for msg in messages:
            for content in msg['content']:
                if content['type'] == 'image':
                    num_images += self.temporal_patch_size
                elif content['type'] == 'video':
                    num_images += len(content['video'])
        if num_images > 0 and self.max_pixels_per_sample // num_images < image_processing_config['max_pixels']:
            image_processing_config['max_pixels'] = self.max_pixels_per_sample // num_images
            image_processing_config['min_pixels'] = min(image_processing_config['min_pixels'], image_processing_config['max_pixels'])

        for msg in messages:
            for content in msg['content']:
                if content['type'] == 'image':
                    content['image'] = self.preprocess_image(content['image'], image_processing_config)
                    content['image'] = self.image_processor(images = content['image'], **output_kwargs["images_kwargs"], return_tensors="pt")
                    content['num_vision_tokens'] = self.get_num_vision_tokens(content)
                    pixel_values.append(content['image']['pixel_values'])
                    if 'image_grid_thw' in content['image']:
                        image_grid_thw.extend(content['image']['image_grid_thw'])
                elif content['type'] == 'video':
                    content['video'] = self.preprocess_image(content['video'], image_processing_config)
                    if isinstance(self.image_processor, Qwen2VLImageProcessor):
                        content['video'] = self.image_processor(images = None, videos = content['video'], **output_kwargs["images_kwargs"], return_tensors="pt")
                        pixel_values.append(content['video']['pixel_values_videos'])
                    else:
                        content['video'] = self.image_processor(images = content['video'], **output_kwargs["images_kwargs"], return_tensors="pt")
                        pixel_values.append(content['video']['pixel_values'])

                    if 'video_grid_thw' in content['video']:
                        image_grid_thw.extend(content['video']['video_grid_thw'])
                    content['num_vision_tokens'] = self.get_num_vision_tokens(content)
        
        #【文本处理】
        add_generation_prompt = (not is_training and messages[-1]['role'] != 'assistant')
        strip_final_eos = (not is_training and messages[-1]['role'] == 'assistant')
        text_inputs = self.tokenizer.apply_chat_template(
            messages,
            chat_template = self.chat_template,
            tokenize=True,
            tokenizer_kwargs = output_kwargs["text_kwargs"],
            return_assistant_tokens_mask=True, 
            return_dict=True,
            add_generation_prompt=add_generation_prompt,    
            strip_final_eos=strip_final_eos,    
        )
        labels = [-100 if j == 0 else i for i, j in zip(text_inputs['input_ids'], text_inputs['assistant_masks'])]
        labels = labels[:self.max_seq_len]
        input_ids = text_inputs['input_ids'][:self.max_seq_len]

        image_token_id = self.tokenizer.convert_tokens_to_ids(self.image_token)
        if image_token_id in text_inputs['input_ids'][self.max_seq_len:]:
            raise ValueError(f'Too long sequence! {len(text_inputs["input_ids"])}')
        
        outputs = {
            'input_ids': input_ids,
            'labels': labels,
            'num_images': num_images,
        }
        if len(pixel_values) > 0:
            outputs['pixel_values'] = torch.cat(pixel_values, dim=0)
        if len(image_grid_thw) > 0:
            outputs['image_grid_thw'] = torch.stack(image_grid_thw)
        return outputs
    

    def preprocess_image(self, pil_img: Union[Image.Image, List[Image.Image]], image_processing_config):
        if image_processing_config is None:
            return pil_img
        images = pil_img
        if isinstance(pil_img, Image.Image):
            images = [images]
        if image_processing_config['do_crop']:
            images = [self.centralcrop(img, rate=[4, 3]) for img in images]
        if image_processing_config['do_padding']:
            images = [self.expand2square(
                img,
                # tuple(int(x * 255) for x in self.processor.image_processor.image_mean)
                tuple(int(x * 255) for x in [0, 0, 0])
            ) for img in images]
        if image_processing_config['do_resize']:
            images = [self.resize2square(img) for img in images]
        if image_processing_config.get('max_pixels'):
            images = [self.resize2pixels(
                img, 
                int(image_processing_config['max_pixels']), 
                int(image_processing_config['min_pixels'])
            ) for img in images]
        if isinstance(pil_img, Image.Image):
            images = images[0]
        return images

    def expand2square(self, pil_img, background_color):
        width, height = pil_img.size
        if width == height:
            return pil_img
        elif width > height:
            result = Image.new(pil_img.mode, (width, width), background_color)
            result.paste(pil_img, (0, (width - height) // 2))
            return result
        else:
            result = Image.new(pil_img.mode, (height, height), background_color)
            result.paste(pil_img, ((height - width) // 2, 0))
            return result

    def resize2square(self, pil_img: Image.Image):
        width, height = pil_img.size
        pil_img = pil_img.resize((max(width, height), max(width, height)))
        return pil_img
    
    def centralcrop(self, pil_img: Image.Image, rate=[4, 3]):
        width, height = pil_img.size
        size = (width, height)
        min_len = min(size)
        longer_side = 0 if width >= height else 1
        center = (width/2, height/2)
        box = [0, 0, size[0], size[1]]

        # if longer_side == 0:
        #     box[0] = max(0, center[0] - 1/2*min_len/rate[1]*rate[0])
        #     box[2] = min(width, center[0] + 1/2*min_len/rate[1]*rate[0])
        # else:
        #     box[1] = max(0, center[1] - 1/2*min_len/rate[1]*rate[0])
        #     box[3] = min(height, center[1] + 1/2*min_len/rate[1]*rate[0])
        box[longer_side] = max(0, center[longer_side] - 1/2*min_len/rate[1]*rate[0])
        box[2 + longer_side] = min(size[longer_side], center[longer_side] + 1/2*min_len/rate[1]*rate[0])

        # box = (width/2-min_len/2, height/2-min_len/2, width/2+min_len/2, height/2+min_len/2)
        pil_img = pil_img.crop(box)
        return pil_img
    
    def resize2pixels(self, pil_img: Image.Image, max_pixels=None, min_pixels=None):
        width, height = pil_img.size
        new_height, new_width = smart_resize(height, width, factor=1, max_pixels=max_pixels, min_pixels=min_pixels)
        pil_img = pil_img.resize((new_width, new_height))
        return pil_img

    def get_num_vision_tokens(self, content):
        if isinstance(self.image_processor, Qwen2VLImageProcessor):
            merge_length = self.image_processor.merge_size**2
            if content['type'] == 'image':
                num_image_tokens = content['image']['image_grid_thw'].prod() // merge_length
            else:
                num_image_tokens = content['video']['video_grid_thw'].prod() // merge_length
            return num_image_tokens
        else:
            # 其他模型:image tokens (-> 2x2 compressed) -> add image_newline and image_new
            k = 'image'if content['type'] == 'image' else 'video'
            pixel_values = content[k]['pixel_values'][0]
            n_frames = len(content[k]['pixel_values'])
                
            height, width = get_image_size(to_numpy_array(pixel_values))
            num_image_tokens = (height // (self.patch_size * self.merge_size)) * (width // (self.patch_size * self.merge_size) + 1) + 1
            return num_image_tokens * n_frames
      
    def batch_decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        """
        return self.tokenizer.batch_decode(*args, **kwargs)

    def decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        """
        return self.tokenizer.decode(*args, **kwargs)

    @property
    def model_input_names(self):
        tokenizer_input_names = self.tokenizer.model_input_names
        image_processor_input_names = self.image_processor.model_input_names
        return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))