Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,008 Bytes
dcd4560 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
from typing import List, Union
from PIL import Image
import torch
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput, get_image_size, to_numpy_array
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack, _validate_images_text_input_order
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
from transformers.utils import logging
from transformers import Qwen2VLImageProcessor
from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize
logger = logging.get_logger(__name__)
class TarsierProcessorKwargs(ProcessingKwargs, total=False):
_defaults = {
"text_kwargs": {},
"images_kwargs": {},
}
class TarsierProcessor(ProcessorMixin):
attributes = ["image_processor", "tokenizer"]
valid_kwargs = ["chat_template", "image_token", "patch_size", "merge_size", "temporal_patch_size", "max_seq_len"]
image_processor_class = "AutoImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(
self,
image_processor=None,
tokenizer=None,
chat_template=None,
image_token="<image>",
patch_size=None,
merge_size=1,
temporal_patch_size=1,
max_seq_len=8192,
**kwargs,
) -> None:
self.image_token = image_token
self.patch_size = patch_size
self.merge_size = merge_size
self.temporal_patch_size = temporal_patch_size
self.max_seq_len = max_seq_len
self.max_pixels_per_sample = 128 * 384 * 384
super().__init__(image_processor, tokenizer, chat_template=chat_template)
def __call__(
self,
messages,
image_processing_config=None,
is_training=True,
) -> torch.Tensor:
output_kwargs = self._merge_kwargs(
TarsierProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
)
# 【图片处理】
pixel_values, image_grid_thw = [], []
num_images = 0
for msg in messages:
for content in msg['content']:
if content['type'] == 'image':
num_images += self.temporal_patch_size
elif content['type'] == 'video':
num_images += len(content['video'])
if num_images > 0 and self.max_pixels_per_sample // num_images < image_processing_config['max_pixels']:
image_processing_config['max_pixels'] = self.max_pixels_per_sample // num_images
image_processing_config['min_pixels'] = min(image_processing_config['min_pixels'], image_processing_config['max_pixels'])
for msg in messages:
for content in msg['content']:
if content['type'] == 'image':
content['image'] = self.preprocess_image(content['image'], image_processing_config)
content['image'] = self.image_processor(images = content['image'], **output_kwargs["images_kwargs"], return_tensors="pt")
content['num_vision_tokens'] = self.get_num_vision_tokens(content)
pixel_values.append(content['image']['pixel_values'])
if 'image_grid_thw' in content['image']:
image_grid_thw.extend(content['image']['image_grid_thw'])
elif content['type'] == 'video':
content['video'] = self.preprocess_image(content['video'], image_processing_config)
if isinstance(self.image_processor, Qwen2VLImageProcessor):
content['video'] = self.image_processor(images = None, videos = content['video'], **output_kwargs["images_kwargs"], return_tensors="pt")
pixel_values.append(content['video']['pixel_values_videos'])
else:
content['video'] = self.image_processor(images = content['video'], **output_kwargs["images_kwargs"], return_tensors="pt")
pixel_values.append(content['video']['pixel_values'])
if 'video_grid_thw' in content['video']:
image_grid_thw.extend(content['video']['video_grid_thw'])
content['num_vision_tokens'] = self.get_num_vision_tokens(content)
#【文本处理】
add_generation_prompt = (not is_training and messages[-1]['role'] != 'assistant')
strip_final_eos = (not is_training and messages[-1]['role'] == 'assistant')
text_inputs = self.tokenizer.apply_chat_template(
messages,
chat_template = self.chat_template,
tokenize=True,
tokenizer_kwargs = output_kwargs["text_kwargs"],
return_assistant_tokens_mask=True,
return_dict=True,
add_generation_prompt=add_generation_prompt,
strip_final_eos=strip_final_eos,
)
labels = [-100 if j == 0 else i for i, j in zip(text_inputs['input_ids'], text_inputs['assistant_masks'])]
labels = labels[:self.max_seq_len]
input_ids = text_inputs['input_ids'][:self.max_seq_len]
image_token_id = self.tokenizer.convert_tokens_to_ids(self.image_token)
if image_token_id in text_inputs['input_ids'][self.max_seq_len:]:
raise ValueError(f'Too long sequence! {len(text_inputs["input_ids"])}')
outputs = {
'input_ids': input_ids,
'labels': labels,
'num_images': num_images,
}
if len(pixel_values) > 0:
outputs['pixel_values'] = torch.cat(pixel_values, dim=0)
if len(image_grid_thw) > 0:
outputs['image_grid_thw'] = torch.stack(image_grid_thw)
return outputs
def preprocess_image(self, pil_img: Union[Image.Image, List[Image.Image]], image_processing_config):
if image_processing_config is None:
return pil_img
images = pil_img
if isinstance(pil_img, Image.Image):
images = [images]
if image_processing_config['do_crop']:
images = [self.centralcrop(img, rate=[4, 3]) for img in images]
if image_processing_config['do_padding']:
images = [self.expand2square(
img,
# tuple(int(x * 255) for x in self.processor.image_processor.image_mean)
tuple(int(x * 255) for x in [0, 0, 0])
) for img in images]
if image_processing_config['do_resize']:
images = [self.resize2square(img) for img in images]
if image_processing_config.get('max_pixels'):
images = [self.resize2pixels(
img,
int(image_processing_config['max_pixels']),
int(image_processing_config['min_pixels'])
) for img in images]
if isinstance(pil_img, Image.Image):
images = images[0]
return images
def expand2square(self, pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
def resize2square(self, pil_img: Image.Image):
width, height = pil_img.size
pil_img = pil_img.resize((max(width, height), max(width, height)))
return pil_img
def centralcrop(self, pil_img: Image.Image, rate=[4, 3]):
width, height = pil_img.size
size = (width, height)
min_len = min(size)
longer_side = 0 if width >= height else 1
center = (width/2, height/2)
box = [0, 0, size[0], size[1]]
# if longer_side == 0:
# box[0] = max(0, center[0] - 1/2*min_len/rate[1]*rate[0])
# box[2] = min(width, center[0] + 1/2*min_len/rate[1]*rate[0])
# else:
# box[1] = max(0, center[1] - 1/2*min_len/rate[1]*rate[0])
# box[3] = min(height, center[1] + 1/2*min_len/rate[1]*rate[0])
box[longer_side] = max(0, center[longer_side] - 1/2*min_len/rate[1]*rate[0])
box[2 + longer_side] = min(size[longer_side], center[longer_side] + 1/2*min_len/rate[1]*rate[0])
# box = (width/2-min_len/2, height/2-min_len/2, width/2+min_len/2, height/2+min_len/2)
pil_img = pil_img.crop(box)
return pil_img
def resize2pixels(self, pil_img: Image.Image, max_pixels=None, min_pixels=None):
width, height = pil_img.size
new_height, new_width = smart_resize(height, width, factor=1, max_pixels=max_pixels, min_pixels=min_pixels)
pil_img = pil_img.resize((new_width, new_height))
return pil_img
def get_num_vision_tokens(self, content):
if isinstance(self.image_processor, Qwen2VLImageProcessor):
merge_length = self.image_processor.merge_size**2
if content['type'] == 'image':
num_image_tokens = content['image']['image_grid_thw'].prod() // merge_length
else:
num_image_tokens = content['video']['video_grid_thw'].prod() // merge_length
return num_image_tokens
else:
# 其他模型:image tokens (-> 2x2 compressed) -> add image_newline and image_new
k = 'image'if content['type'] == 'image' else 'video'
pixel_values = content[k]['pixel_values'][0]
n_frames = len(content[k]['pixel_values'])
height, width = get_image_size(to_numpy_array(pixel_values))
num_image_tokens = (height // (self.patch_size * self.merge_size)) * (width // (self.patch_size * self.merge_size) + 1) + 1
return num_image_tokens * n_frames
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|