Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,348 Bytes
dcd4560 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
"""Datamodule for Llava Pretraining and Finetuning"""
import os
import re
from PIL import Image
import numpy as np
import re
import tempfile
from typing import Dict, List, Union, Tuple
import traceback
import json
import torch
import torch.nn.functional as F
from transformers import DataCollatorForSeq2Seq
from tools.rw_utils import read_jsonlines
from torch.utils.data import Dataset, DataLoader
np_str_obj_array_pattern = re.compile(r"[SaUO]")
default_collate_err_msg_format = (
"default_collate: batch must contain tensors, numpy arrays, numbers, "
"dicts or lists; found {}"
)
from .custom_data_parsers.standard_vision_parser import VisionParser
from .custom_data_parsers.object_tracking_parser import ObjectTrackingParser
from .custom_data_parsers.multi_images_parser import MultiImagesParser
from .custom_data_parsers.video_permutation_parser import VideoPermutationParser
from .custom_data_parsers.utils_visualize import visualize_image_bbox
from .tarsier_processor import TarsierProcessor
from tools.rw_utils import NumpyArrayEncoder
from .utils import DictToObject
import os
HF_TOKEN = os.environ.get('HF_TOKEN', '')
class TarsierDataProcessor:
def __init__(
self,
processor: TarsierProcessor,
n_frames: Union[int, list],
max_n_frames=256,
max_pixels=int(1280 * 720 // 2),
min_pixels=0,
max_seq_len=None,
is_training=True, # 会影响:1. 训练和测试时采帧不同;2. 测试时忽略 response。
print_data_error=True,
do_image_padding=False,
do_image_crop=False,
do_image_resize=True,
video_sampling_strategy={},
prompt='',
train_task='sft',
**kwargs
):
self.kwargs = kwargs
self.processor = processor
self.pad_collator = DataCollatorForSeq2Seq(processor.tokenizer, padding='longest')
self.processor.max_seq_len = self.tokenizer.model_max_length if max_seq_len is None else max_seq_len
self.n_frames = n_frames
self.max_n_frames = max_n_frames
self.max_pixels = max_pixels
self.min_pixels = min_pixels
self.is_training = is_training
self.print_data_error = print_data_error
self.do_image_padding = do_image_padding
self.do_image_crop = do_image_crop
self.do_image_resize = do_image_resize
self.video_sampling_strategy = video_sampling_strategy
self.prompt = prompt
self.train_task = train_task
self.object_tracking_parser = ObjectTrackingParser(
n_frames=self.n_frames,
max_objects=4,
is_training=self.is_training,
)
self.multi_images_parser = MultiImagesParser(
n_frames=self.n_frames,
is_training=self.is_training,
)
self.video_permutation_parser = VideoPermutationParser(
n_frames=self.n_frames,
is_training=self.is_training,
video_sampling_strategy=self.video_sampling_strategy,
)
self.vision_parser = VisionParser(
n_frames=self.n_frames,
max_n_frames=self.max_n_frames,
is_training=self.is_training,
video_sampling_strategy=self.video_sampling_strategy
)
def select_parser(self, data_dict):
if data_dict.get('task', None) == 'video/object_tracking':
return self.object_tracking_parser
elif data_dict.get('task', None) == 'multi_images':
return self.multi_images_parser
elif data_dict.get('dataset', None) == 'video_permutation':
return self.video_permutation_parser
else:
return self.vision_parser
def parse_image_processing_config(self, data_dict):
image_processing_config=data_dict.get('image_processing_config', {})
do_padding = image_processing_config.get('do_padding', self.do_image_padding)
do_crop = image_processing_config.get('do_crop', self.do_image_crop)
do_resize = image_processing_config.get('do_resize', self.do_image_resize)
max_pixels = image_processing_config.get('max_pixels', self.max_pixels)
min_pixels = image_processing_config.get('min_pixels', self.min_pixels)
assert min_pixels <= max_pixels
image_processing_config['do_padding'] = do_padding
image_processing_config['do_crop'] = do_crop
image_processing_config['do_resize'] = do_resize
image_processing_config['max_pixels'] = max_pixels
image_processing_config['min_pixels'] = min_pixels
return image_processing_config
def _transform(self, raw_data_dict: Dict) -> Dict:
data_dict = json.loads(json.dumps(raw_data_dict, cls=NumpyArrayEncoder))
del raw_data_dict
if self.prompt:
for msg in data_dict['messages']:
if msg['role'] == 'user':
for content in msg['content']:
if content['type'] == 'text':
content['text'] = self.prompt
data_dict_copy = json.loads(json.dumps(data_dict, cls=NumpyArrayEncoder))
image_processing_config = self.parse_image_processing_config(data_dict)
parser = self.select_parser(data_dict)
messages = parser.transform(data_dict, image_processing_config)
data_dict_copy['extra_info'] = data_dict.pop('extra_info', {})
# visualize_image_bbox(data_dict, image_processing_config, self.processor)
outputs = self.processor(messages, image_processing_config, is_training=self.is_training)
# if not self.is_training:
outputs['raw_data_dict'] = data_dict_copy
return [outputs]
def _split_chosen_rejected(self, data_dict: Dict):
chosen_data_dict = data_dict
rejected_data_dict = json.loads(json.dumps(data_dict, cls=NumpyArrayEncoder))
for msg in chosen_data_dict['messages']:
if msg['role'] == 'assistant':
for content in msg['content']:
if content['type'] == 'text':
content['text'] = content['chosen']
for msg in rejected_data_dict['messages']:
if msg['role'] == 'assistant':
for content in msg['content']:
if content['type'] == 'text':
content['text'] = content['rejected']
return chosen_data_dict, rejected_data_dict
def transform(self, data_dict: Dict) -> Dict:
try:
if self.train_task == 'dpo':
chosen_data_dict, rejected_data_dict = self._split_chosen_rejected(data_dict)
return self._transform(chosen_data_dict) + self._transform(rejected_data_dict)
return self._transform(data_dict)
except Exception as e:
if self.print_data_error:
print(traceback.format_exc())
print(f'Error occurs when processing: \n{data_dict}')
return []
def batch_transform(self, batch_data: List[Dict]) -> Dict:
model_inputs = {}
# if not self.is_training:
raw_data_dict = [d.pop('raw_data_dict') for d in batch_data]
model_inputs['raw_data_dict'] = raw_data_dict
batch_pixel_values = [d.pop('pixel_values') for d in batch_data if 'pixel_values' in d]
batch_image_grid_thw = [d.pop('image_grid_thw') for d in batch_data if 'image_grid_thw' in d]
if len(batch_pixel_values) == 0:
vision_placeholder = self.get_vision_placeholder()
batch_pixel_values = [vision_placeholder.get('pixel_values')]
batch_image_grid_thw = [vision_placeholder.get('image_grid_thw')] if 'image_grid_thw' in vision_placeholder else []
model_inputs['pixel_values'] = torch.cat(batch_pixel_values, dim=0)
if len(batch_image_grid_thw) > 0:
model_inputs['image_grid_thw'] = torch.cat(batch_image_grid_thw, dim=0)
batch_num_images = [d.pop('num_images') for d in batch_data]
model_inputs['num_images'] = torch.tensor(batch_num_images)
model_inputs.update(self.pad_collator(batch_data))
return model_inputs
def __call__(self, batch_data: Union[Dict, List[Dict]]) -> Dict:
if isinstance(batch_data, dict):
batch_data = [batch_data]
batch = [self.transform(d)[0] for d in batch_data]
return self.batch_transform(batch)
def get_vision_placeholder(self):
messages = [{"role": "user", "content": [{"type": "image", "image": Image.new(mode='RGB', size=(336, 336))}]}]
image_processing_config = self.parse_image_processing_config({})
return self.processor(messages, image_processing_config)
def get_text_placeholder(self):
messages = [
{"role": "user", "content": [{"type": "text", "text": "Hello!"}]},
{"role": "assistant", "content": [{"type": "text", "text": "Thank you very much"}]},
]
image_processing_config = self.parse_image_processing_config({})
return self.processor(messages, image_processing_config)
def init_processor(processor: Union[TarsierProcessor, str]=None, config: Dict=None):
config = DictToObject(config) if isinstance(config, dict) else config
if isinstance(processor, str):
sub_processor = TarsierProcessor.from_pretrained(
processor,
padding_side='left',
trust_remote_code=True,
token=HF_TOKEN,
)
else:
sub_processor = processor
processor = TarsierDataProcessor(
processor=sub_processor,
n_frames=config.n_frames,
max_n_frames=config.max_n_frames,
max_pixels=config.max_pixels,
min_pixels=config.min_pixels,
max_seq_len=config.max_seq_len,
is_training=config.is_training,
print_data_error=config.print_data_error,
do_image_padding=config.do_image_padding,
do_image_crop=config.do_image_crop,
do_image_resize=config.do_image_resize,
video_sampling_strategy=config.video_sampling_strategy,
prompt=config.prompt,
train_task=config.train_task
)
return processor
class TarsierDataset(Dataset):
def __init__(self, ann_path="", anns=None, config: Dict=None, processor: Union[TarsierDataProcessor, TarsierProcessor, str]=None):
self.config = DictToObject(config) if isinstance(config, dict) else config
if not isinstance(processor, TarsierDataProcessor):
self.processor = init_processor(processor, config)
else:
self.processor = processor
if anns is None:
self.anns = []
if isinstance(ann_path, str):
ann_path = [ann_path]
for path in ann_path:
self.anns.extend(read_jsonlines(path))
else:
self.anns = anns
def __len__(self):
return len(self.anns)
def __getitem__(self, index):
if index < 0 or index >= len(self.anns):
raise IndexError("Index out of range")
try:
ann = self.anns[index]
model_inputs = self.processor(ann)
except Exception as e:
print(f"Load data error: {e}")
return ann, None
return ann, model_inputs
|