File size: 11,348 Bytes
dcd4560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
"""Datamodule for Llava Pretraining and Finetuning"""
import os
import re
from PIL import Image
import numpy as np
import re
import tempfile
from typing import Dict, List, Union, Tuple
import traceback
import json

import torch
import torch.nn.functional as F
from transformers import DataCollatorForSeq2Seq

from tools.rw_utils import read_jsonlines
from torch.utils.data import Dataset, DataLoader

np_str_obj_array_pattern = re.compile(r"[SaUO]")

default_collate_err_msg_format = (
    "default_collate: batch must contain tensors, numpy arrays, numbers, "
    "dicts or lists; found {}"
)

from .custom_data_parsers.standard_vision_parser import VisionParser
from .custom_data_parsers.object_tracking_parser import ObjectTrackingParser
from .custom_data_parsers.multi_images_parser import MultiImagesParser
from .custom_data_parsers.video_permutation_parser import VideoPermutationParser
from .custom_data_parsers.utils_visualize import visualize_image_bbox

from .tarsier_processor import TarsierProcessor

from tools.rw_utils import NumpyArrayEncoder
from .utils import DictToObject
import os

HF_TOKEN = os.environ.get('HF_TOKEN', '')

class TarsierDataProcessor:
    def __init__(
        self,
        processor: TarsierProcessor,
        n_frames: Union[int, list],
        max_n_frames=256,
        max_pixels=int(1280 * 720 // 2),
        min_pixels=0,
        max_seq_len=None,
        is_training=True,  # 会影响:1. 训练和测试时采帧不同;2. 测试时忽略 response。
        print_data_error=True,
        do_image_padding=False,
        do_image_crop=False,
        do_image_resize=True,
        video_sampling_strategy={},
        prompt='',
        train_task='sft',
        **kwargs
    ):
        self.kwargs = kwargs

        self.processor = processor
        self.pad_collator = DataCollatorForSeq2Seq(processor.tokenizer, padding='longest')
        
        self.processor.max_seq_len = self.tokenizer.model_max_length if max_seq_len is None else max_seq_len

        self.n_frames = n_frames
        self.max_n_frames = max_n_frames
        self.max_pixels = max_pixels
        self.min_pixels = min_pixels

        self.is_training = is_training
        self.print_data_error = print_data_error
        self.do_image_padding = do_image_padding
        self.do_image_crop = do_image_crop
        self.do_image_resize = do_image_resize
        self.video_sampling_strategy = video_sampling_strategy
        self.prompt = prompt
        self.train_task = train_task

        self.object_tracking_parser = ObjectTrackingParser(
            n_frames=self.n_frames,
            max_objects=4,
            is_training=self.is_training,
        )
        self.multi_images_parser = MultiImagesParser(
            n_frames=self.n_frames,
            is_training=self.is_training,
        )
        self.video_permutation_parser = VideoPermutationParser(
            n_frames=self.n_frames,
            is_training=self.is_training,
            video_sampling_strategy=self.video_sampling_strategy,
        )
        self.vision_parser = VisionParser(
            n_frames=self.n_frames,
            max_n_frames=self.max_n_frames,
            is_training=self.is_training,
            video_sampling_strategy=self.video_sampling_strategy
        )

    def select_parser(self, data_dict):
        if data_dict.get('task', None) == 'video/object_tracking':
            return self.object_tracking_parser
        elif data_dict.get('task', None) == 'multi_images':
            return self.multi_images_parser
        elif data_dict.get('dataset', None) == 'video_permutation':
            return self.video_permutation_parser
        else:
            return self.vision_parser
    
    def parse_image_processing_config(self, data_dict):
        image_processing_config=data_dict.get('image_processing_config', {})

        do_padding = image_processing_config.get('do_padding', self.do_image_padding)
        do_crop = image_processing_config.get('do_crop', self.do_image_crop)
        do_resize = image_processing_config.get('do_resize', self.do_image_resize)
        max_pixels = image_processing_config.get('max_pixels', self.max_pixels)
        min_pixels = image_processing_config.get('min_pixels', self.min_pixels)

        assert min_pixels <= max_pixels

        image_processing_config['do_padding'] = do_padding
        image_processing_config['do_crop'] = do_crop
        image_processing_config['do_resize'] = do_resize
        image_processing_config['max_pixels'] = max_pixels
        image_processing_config['min_pixels'] = min_pixels

        return image_processing_config
            

    def _transform(self, raw_data_dict: Dict) -> Dict:
        data_dict = json.loads(json.dumps(raw_data_dict, cls=NumpyArrayEncoder))
        del raw_data_dict

        if self.prompt:
            for msg in data_dict['messages']:
                if msg['role'] == 'user':
                    for content in msg['content']:
                        if content['type'] == 'text':
                            content['text'] = self.prompt

        data_dict_copy = json.loads(json.dumps(data_dict, cls=NumpyArrayEncoder))

        image_processing_config = self.parse_image_processing_config(data_dict)
        parser = self.select_parser(data_dict)
        messages = parser.transform(data_dict, image_processing_config)
        data_dict_copy['extra_info'] = data_dict.pop('extra_info', {})

        # visualize_image_bbox(data_dict, image_processing_config, self.processor)
        outputs = self.processor(messages, image_processing_config, is_training=self.is_training)
        
        # if not self.is_training:
        outputs['raw_data_dict'] = data_dict_copy

        return [outputs]
    
    def _split_chosen_rejected(self, data_dict: Dict):
        chosen_data_dict = data_dict
        rejected_data_dict = json.loads(json.dumps(data_dict, cls=NumpyArrayEncoder))
        for msg in chosen_data_dict['messages']:
            if msg['role'] == 'assistant':
                for content in msg['content']:
                    if content['type'] == 'text':
                        content['text'] = content['chosen']
        
        for msg in rejected_data_dict['messages']:
            if msg['role'] == 'assistant':
                for content in msg['content']:
                    if content['type'] == 'text':
                        content['text'] = content['rejected']

        return chosen_data_dict, rejected_data_dict

    def transform(self, data_dict: Dict) -> Dict:
        try:
            if self.train_task == 'dpo':
                chosen_data_dict, rejected_data_dict = self._split_chosen_rejected(data_dict)
                return self._transform(chosen_data_dict) + self._transform(rejected_data_dict)
            return self._transform(data_dict)
        except Exception as e:
            if self.print_data_error:
                print(traceback.format_exc())
                print(f'Error occurs when processing: \n{data_dict}')
            return []

    def batch_transform(self, batch_data: List[Dict]) -> Dict:
        model_inputs = {}
        # if not self.is_training:
        raw_data_dict = [d.pop('raw_data_dict') for d in batch_data]
        model_inputs['raw_data_dict'] = raw_data_dict

        batch_pixel_values = [d.pop('pixel_values') for d in batch_data if 'pixel_values' in d]
        batch_image_grid_thw = [d.pop('image_grid_thw') for d in batch_data if 'image_grid_thw' in d]
        if len(batch_pixel_values) == 0:
            vision_placeholder = self.get_vision_placeholder()
            batch_pixel_values = [vision_placeholder.get('pixel_values')]
            batch_image_grid_thw = [vision_placeholder.get('image_grid_thw')] if 'image_grid_thw' in vision_placeholder else []

        model_inputs['pixel_values'] = torch.cat(batch_pixel_values, dim=0)
        if len(batch_image_grid_thw) > 0:
            model_inputs['image_grid_thw'] = torch.cat(batch_image_grid_thw, dim=0)
    
        batch_num_images = [d.pop('num_images') for d in batch_data]
        model_inputs['num_images'] = torch.tensor(batch_num_images)
        model_inputs.update(self.pad_collator(batch_data))
        return model_inputs
    
    def __call__(self, batch_data: Union[Dict, List[Dict]]) -> Dict:
        if isinstance(batch_data, dict):
            batch_data = [batch_data]
        batch = [self.transform(d)[0] for d in batch_data]
        return self.batch_transform(batch)
    
    def get_vision_placeholder(self):
        messages = [{"role": "user", "content": [{"type": "image", "image": Image.new(mode='RGB', size=(336, 336))}]}]
        image_processing_config = self.parse_image_processing_config({})
        return self.processor(messages, image_processing_config)
    
    def get_text_placeholder(self):
        messages = [
            {"role": "user", "content": [{"type": "text", "text": "Hello!"}]},
            {"role": "assistant", "content": [{"type": "text", "text": "Thank you very much"}]},
        ]
        image_processing_config = self.parse_image_processing_config({})
        return self.processor(messages, image_processing_config)

def init_processor(processor: Union[TarsierProcessor, str]=None, config: Dict=None):
    config = DictToObject(config) if isinstance(config, dict) else config
    if isinstance(processor, str):
        sub_processor = TarsierProcessor.from_pretrained(
            processor, 
            padding_side='left',
            trust_remote_code=True,
            token=HF_TOKEN,
        )
    else:
        sub_processor = processor
    processor = TarsierDataProcessor(
        processor=sub_processor,
        n_frames=config.n_frames,
        max_n_frames=config.max_n_frames,
        max_pixels=config.max_pixels,
        min_pixels=config.min_pixels,
        max_seq_len=config.max_seq_len,
        is_training=config.is_training,
        print_data_error=config.print_data_error,
        do_image_padding=config.do_image_padding,
        do_image_crop=config.do_image_crop,
        do_image_resize=config.do_image_resize,
        video_sampling_strategy=config.video_sampling_strategy,
        prompt=config.prompt,
        train_task=config.train_task
    )
    return processor

class TarsierDataset(Dataset):
    def __init__(self, ann_path="", anns=None, config: Dict=None, processor: Union[TarsierDataProcessor, TarsierProcessor, str]=None):
        self.config = DictToObject(config) if isinstance(config, dict) else config
        if not isinstance(processor, TarsierDataProcessor):
            self.processor = init_processor(processor, config)
        else:
            self.processor = processor
        if anns is None:
            self.anns = []
            if isinstance(ann_path, str):
                ann_path = [ann_path]
            for path in ann_path:
                self.anns.extend(read_jsonlines(path))
        else:
            self.anns = anns

    def __len__(self):
        return len(self.anns)
    
    def __getitem__(self, index):
        if index < 0 or index >= len(self.anns):
            raise IndexError("Index out of range")
        try:
            ann = self.anns[index]
            model_inputs = self.processor(ann)
        except Exception as e:
            print(f"Load data error: {e}")
            return ann, None
        return ann, model_inputs