File size: 11,595 Bytes
dcd4560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
from typing import Dict, List
from PIL import Image
import random

from .utils import sample_video, read_image, adjust_bbox, filter_ocr_polygon


class VisionParser:
    def __init__(
        self,
        n_frames=8,
        max_n_frames=256,
        is_training=True,
        video_sampling_strategy={},
    ):
        self.n_frames = n_frames
        self.max_n_frames = max_n_frames
        self.is_training = is_training
        self.video_sampling_strategy = video_sampling_strategy

        # fmt: off
        self.data_temp = {
            "messages": [
                {
                    "role": "user",
                    "content": [
                        {"type": "text", "text": "Describe the image and the video."},
                        # 支持的 image 格式:
                        {"type": "image", "image": {"image_file": "/path/to/image"}},
                        {"type": "image", "image": {"video_file": "/path/to/video", "frame_indices": 0}},
                        # 支持的 video 格式:
                        {"type": "video", "video": {"video_file": "/path/to/video"}},
                        {"type": "video", "video": {"video_file": "/path/to/video", "frame_indices": [0, 1, 2]}},
                        {"type": "video", "video": {"video_file": "/path/to/video", "start_frame": 0, "end_frame": 100}},
                        {"type": "video", "video": {"video_file": "/path/to/video", "time_indices": [0, 1, 2]}},
                        {"type": "video", "video": {"video_file": "/path/to/video", "start_time": 0, "end_time": 100}},
                        {"type": "video", "video": {"image_file": ["/path/to/image"]}, "frame_indices": [0, 1, 2]},
                    ]
                },
                {
                    "role": "assistant",
                    "content": [
                        {"type": "text","text": "xxx"}
                    ]
                }
            ],
            "dataset": "LSMDC",
            "task": "video/caption"
        }
        # fmt: on
    
    def check_format(self, data_dict: Dict, image_processing_config: Dict):
        if image_processing_config.get('do_crop', False) and image_processing_config.get('has_coordinates', False):
            raise ValueError(f'do_crop and has_coordinates cannot be True at the same time!')

    """
    1. 将 messages 中的 image/video 替换成相应的 PIL.Image/List[PIL.Image]
    2. text 的特殊处理:调整 box;过滤面积太小的OCR
    """
    def transform(self, data_dict: Dict, image_processing_config: Dict = None) -> Dict:
        self.check_format(data_dict, image_processing_config)

        self.set_n_frames(data_dict)

        first_image = None # ugly! 需要调整box/过滤面积太小的OCR的数据只有图片任务

        for msg in data_dict['messages']:
            if isinstance(msg['content'], dict):
                msg['content'] = [msg['content']]
            for content in msg['content']:

                if content['type'] == 'image':
                    content['image'] = self.load_image_item(content['image'])
                    if first_image is None:
                        first_image = content['image']
                elif content['type'] == 'video':
                    video = self.load_video_item(content['video'])
                    content['video'] = video.pop('frames')
                    if video:
                        data_dict['extra_info']['frame_disturb_info'] = video.pop('video_info', {})
                elif content['type'] == 'text':
                    pass
                else:
                    raise ValueError(f"content['type']={content['type']} MUST be one of ['image', 'video', 'text']")
        for msg in data_dict['messages']:
            for content in msg['content']:
                if content['type'] == 'text':
                    self.postprocess_text(content, data_dict, image_processing_config, first_image)

        return data_dict['messages']
                
    # set n_frames for each vision item.
    def set_n_frames(self, data_dict):

        if isinstance(self.n_frames, int):
            n_frames = self.n_frames
        else:
            n_frames = random.choice(self.n_frames)
        
        assert n_frames <= self.max_n_frames

        curr_n_frames = 0
        has_dynamic = False
        for msg in data_dict['messages']:
            if isinstance(msg['content'], dict):
                msg['content'] = [msg['content']]

            for content in msg['content']:

                if content['type'] == 'image':
                    curr_n_frames += 1 
                elif content['type'] == 'video':
                    if 'frame_indices' in content['video']:                        
                        curr_n_frames += len(content['video']['frame_indices'])
                        content['video']['n_frames'] = len(content['video']['frame_indices'])
                    elif 'time_indices' in content['video']:
                        curr_n_frames += len(content['video']['time_indices'])
                        content['video']['n_frames'] = len(content['video']['time_indices'])
                    elif 'min_n_frames' in content['video']:
                        content['video']['min_n_frames'] = int(content['video']['min_n_frames'])
                        curr_n_frames += content['video']['min_n_frames']
                        content['video']['n_frames'] = content['video']['min_n_frames']
                        has_dynamic = True        
                    elif 'fps' in content['video']:
                        content['video']['n_frames'] = self.max_n_frames
                        curr_n_frames += self.max_n_frames
                        has_dynamic = True        
                    else:
                        content['video']['n_frames'] = 0
                        has_dynamic = True

        while curr_n_frames < n_frames and has_dynamic:
            for msg in data_dict['messages']:
                for content in msg['content']:
                    if content['type'] == 'video':
                        if 'frame_indices' in content['video']:
                            pass
                        elif 'time_indices' in content['video']:
                            pass
                        else:
                            if curr_n_frames < n_frames:
                                content['video']['n_frames'] += 1
                            curr_n_frames += 1
        
        while curr_n_frames > self.max_n_frames and has_dynamic:
            for msg in data_dict['messages']:
                for content in msg['content']:
                    if content['type'] == 'video':
                        if 'frame_indices' in content['video']:
                            pass
                        elif 'time_indices' in content['video']:
                            pass
                        else:
                            if curr_n_frames > self.max_n_frames:
                                content['video']['n_frames'] -= 1
                            curr_n_frames -= 1
    

        for msg in data_dict['messages']:
            for content in msg['content']:
                if content['type'] == 'video':
                    if 'frame_indices' in content['video']:
                        pass
                    elif 'time_indices' in content['video']:
                        pass
                    else:
                        n = self.video_sampling_strategy.get('force_frames_n_divisible', 1)
                        if n > 1 and content['video']['n_frames'] % n != 0:
                            content['video']['n_frames'] += n - content['video']['n_frames'] % n

    def load_image_item(self, image_item) -> Image.Image:
        """
        image_item:
        {"image_file": {"lq": "/path/to/image"}}
        {"video_file": {"lq": "/path/to/video"}, "frame_indices": 0}
        """

        # check format
        if ("image_file" not in image_item) and ("video_file" not in image_item):
            raise KeyError(f"Key 'image_file' or 'video_file' not found in image_item")
        if 'image_file' in image_item:
            if not isinstance(image_item['image_file'], str):
                raise ValueError(f"{image_item['image_file']} is not a str!")
        if 'video_file' in image_item:
            if not isinstance(image_item['frame_indices'], int):
                raise ValueError(f"{image_item['frame_indices']} is not a int!")

        if 'image_file' in image_item:
            image = read_image(image_item['image_file'])
        else:
            frame_indices = [image_item['frame_indices']]
            image = sample_video(image_item['video_file'], frame_indices = frame_indices)[0]

        return image

    def load_video_item(self, video_item) -> List[Image.Image]:
        """
        video_item:
        {"video_file": {"lq": "/path/to/video"}, "n_frames": 8} 
        {"video_file": {"lq": "/path/to/video"}, "frame_indices": [0, 1, 2], "n_frames": 3} 
        {"video_file": {"lq": "/path/to/video"}, "start_frame": 0, "end_frame": 100, "n_frames": 8}
        {"video_file": {"lq": "/path/to/video"}, "time_indices": [0, 1, 2], "n_frames": 3}
        {"video_file": {"lq": "/path/to/video"}, "start_time": 0, "end_time": 100, "n_frames": 8}
        {"image_file": {"lq": ["/path/to/image"]}, "frame_indices": [0, 1, 2], "n_frames": 3}
        """

        # check format
        if ("image_file" not in video_item) and ("video_file" not in video_item):
            raise KeyError(f"Key 'image_file' or 'video_file' not found in video_item")
    
        video_path = video_item.get('video_file', video_item.get('image_file'))
        n_frames = video_item.get('n_frames', None)
        frame_indices = video_item.get('frame_indices', None)
        start_frame = video_item.get('start_frame', None)
        end_frame = video_item.get('end_frame', None)
        time_indices = video_item.get('time_indices', None)
        start_time = video_item.get('start_time', None)
        end_time = video_item.get('end_time', None)
        mask_boxes = video_item.get('mask_boxes', None)
        fps = video_item.get('fps', None)

        frames, frame_indices = sample_video(
            video_path=video_path,
            frame_indices=frame_indices,
            start_frame=start_frame,
            end_frame=end_frame,
            n_frames=n_frames,
            time_indices=time_indices,
            start_time=start_time,
            end_time=end_time,
            sampling_fps=fps,
            mask_boxes=mask_boxes,
            is_training=self.is_training,
            video_sampling_strategy=self.video_sampling_strategy,
            return_frame_ids=True,
        )

        if self.video_sampling_strategy.get('use_multi_images_for_video', False):
            new_frames = []
            for f in frames:
                new_frames.extend([f, f])
            frames = new_frames

        if isinstance(frame_indices, dict):
            return {
                'frames': frames,
                'video_info': frame_indices
            }
        return {'frames': frames}
    
    def postprocess_text(self, content, data_dict, image_processing_config, first_image):
        if image_processing_config.get('has_coordinates') and image_processing_config.get('do_padding'):
            content['text'] = adjust_bbox(content['text'], frame=first_image)
        if data_dict.get('task') == 'image/OCR' and image_processing_config.get('has_coordinates'):
            content['text'] = filter_ocr_polygon(content['text'])