Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,595 Bytes
dcd4560 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
from typing import Dict, List
from PIL import Image
import random
from .utils import sample_video, read_image, adjust_bbox, filter_ocr_polygon
class VisionParser:
def __init__(
self,
n_frames=8,
max_n_frames=256,
is_training=True,
video_sampling_strategy={},
):
self.n_frames = n_frames
self.max_n_frames = max_n_frames
self.is_training = is_training
self.video_sampling_strategy = video_sampling_strategy
# fmt: off
self.data_temp = {
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": "Describe the image and the video."},
# 支持的 image 格式:
{"type": "image", "image": {"image_file": "/path/to/image"}},
{"type": "image", "image": {"video_file": "/path/to/video", "frame_indices": 0}},
# 支持的 video 格式:
{"type": "video", "video": {"video_file": "/path/to/video"}},
{"type": "video", "video": {"video_file": "/path/to/video", "frame_indices": [0, 1, 2]}},
{"type": "video", "video": {"video_file": "/path/to/video", "start_frame": 0, "end_frame": 100}},
{"type": "video", "video": {"video_file": "/path/to/video", "time_indices": [0, 1, 2]}},
{"type": "video", "video": {"video_file": "/path/to/video", "start_time": 0, "end_time": 100}},
{"type": "video", "video": {"image_file": ["/path/to/image"]}, "frame_indices": [0, 1, 2]},
]
},
{
"role": "assistant",
"content": [
{"type": "text","text": "xxx"}
]
}
],
"dataset": "LSMDC",
"task": "video/caption"
}
# fmt: on
def check_format(self, data_dict: Dict, image_processing_config: Dict):
if image_processing_config.get('do_crop', False) and image_processing_config.get('has_coordinates', False):
raise ValueError(f'do_crop and has_coordinates cannot be True at the same time!')
"""
1. 将 messages 中的 image/video 替换成相应的 PIL.Image/List[PIL.Image]
2. text 的特殊处理:调整 box;过滤面积太小的OCR
"""
def transform(self, data_dict: Dict, image_processing_config: Dict = None) -> Dict:
self.check_format(data_dict, image_processing_config)
self.set_n_frames(data_dict)
first_image = None # ugly! 需要调整box/过滤面积太小的OCR的数据只有图片任务
for msg in data_dict['messages']:
if isinstance(msg['content'], dict):
msg['content'] = [msg['content']]
for content in msg['content']:
if content['type'] == 'image':
content['image'] = self.load_image_item(content['image'])
if first_image is None:
first_image = content['image']
elif content['type'] == 'video':
video = self.load_video_item(content['video'])
content['video'] = video.pop('frames')
if video:
data_dict['extra_info']['frame_disturb_info'] = video.pop('video_info', {})
elif content['type'] == 'text':
pass
else:
raise ValueError(f"content['type']={content['type']} MUST be one of ['image', 'video', 'text']")
for msg in data_dict['messages']:
for content in msg['content']:
if content['type'] == 'text':
self.postprocess_text(content, data_dict, image_processing_config, first_image)
return data_dict['messages']
# set n_frames for each vision item.
def set_n_frames(self, data_dict):
if isinstance(self.n_frames, int):
n_frames = self.n_frames
else:
n_frames = random.choice(self.n_frames)
assert n_frames <= self.max_n_frames
curr_n_frames = 0
has_dynamic = False
for msg in data_dict['messages']:
if isinstance(msg['content'], dict):
msg['content'] = [msg['content']]
for content in msg['content']:
if content['type'] == 'image':
curr_n_frames += 1
elif content['type'] == 'video':
if 'frame_indices' in content['video']:
curr_n_frames += len(content['video']['frame_indices'])
content['video']['n_frames'] = len(content['video']['frame_indices'])
elif 'time_indices' in content['video']:
curr_n_frames += len(content['video']['time_indices'])
content['video']['n_frames'] = len(content['video']['time_indices'])
elif 'min_n_frames' in content['video']:
content['video']['min_n_frames'] = int(content['video']['min_n_frames'])
curr_n_frames += content['video']['min_n_frames']
content['video']['n_frames'] = content['video']['min_n_frames']
has_dynamic = True
elif 'fps' in content['video']:
content['video']['n_frames'] = self.max_n_frames
curr_n_frames += self.max_n_frames
has_dynamic = True
else:
content['video']['n_frames'] = 0
has_dynamic = True
while curr_n_frames < n_frames and has_dynamic:
for msg in data_dict['messages']:
for content in msg['content']:
if content['type'] == 'video':
if 'frame_indices' in content['video']:
pass
elif 'time_indices' in content['video']:
pass
else:
if curr_n_frames < n_frames:
content['video']['n_frames'] += 1
curr_n_frames += 1
while curr_n_frames > self.max_n_frames and has_dynamic:
for msg in data_dict['messages']:
for content in msg['content']:
if content['type'] == 'video':
if 'frame_indices' in content['video']:
pass
elif 'time_indices' in content['video']:
pass
else:
if curr_n_frames > self.max_n_frames:
content['video']['n_frames'] -= 1
curr_n_frames -= 1
for msg in data_dict['messages']:
for content in msg['content']:
if content['type'] == 'video':
if 'frame_indices' in content['video']:
pass
elif 'time_indices' in content['video']:
pass
else:
n = self.video_sampling_strategy.get('force_frames_n_divisible', 1)
if n > 1 and content['video']['n_frames'] % n != 0:
content['video']['n_frames'] += n - content['video']['n_frames'] % n
def load_image_item(self, image_item) -> Image.Image:
"""
image_item:
{"image_file": {"lq": "/path/to/image"}}
{"video_file": {"lq": "/path/to/video"}, "frame_indices": 0}
"""
# check format
if ("image_file" not in image_item) and ("video_file" not in image_item):
raise KeyError(f"Key 'image_file' or 'video_file' not found in image_item")
if 'image_file' in image_item:
if not isinstance(image_item['image_file'], str):
raise ValueError(f"{image_item['image_file']} is not a str!")
if 'video_file' in image_item:
if not isinstance(image_item['frame_indices'], int):
raise ValueError(f"{image_item['frame_indices']} is not a int!")
if 'image_file' in image_item:
image = read_image(image_item['image_file'])
else:
frame_indices = [image_item['frame_indices']]
image = sample_video(image_item['video_file'], frame_indices = frame_indices)[0]
return image
def load_video_item(self, video_item) -> List[Image.Image]:
"""
video_item:
{"video_file": {"lq": "/path/to/video"}, "n_frames": 8}
{"video_file": {"lq": "/path/to/video"}, "frame_indices": [0, 1, 2], "n_frames": 3}
{"video_file": {"lq": "/path/to/video"}, "start_frame": 0, "end_frame": 100, "n_frames": 8}
{"video_file": {"lq": "/path/to/video"}, "time_indices": [0, 1, 2], "n_frames": 3}
{"video_file": {"lq": "/path/to/video"}, "start_time": 0, "end_time": 100, "n_frames": 8}
{"image_file": {"lq": ["/path/to/image"]}, "frame_indices": [0, 1, 2], "n_frames": 3}
"""
# check format
if ("image_file" not in video_item) and ("video_file" not in video_item):
raise KeyError(f"Key 'image_file' or 'video_file' not found in video_item")
video_path = video_item.get('video_file', video_item.get('image_file'))
n_frames = video_item.get('n_frames', None)
frame_indices = video_item.get('frame_indices', None)
start_frame = video_item.get('start_frame', None)
end_frame = video_item.get('end_frame', None)
time_indices = video_item.get('time_indices', None)
start_time = video_item.get('start_time', None)
end_time = video_item.get('end_time', None)
mask_boxes = video_item.get('mask_boxes', None)
fps = video_item.get('fps', None)
frames, frame_indices = sample_video(
video_path=video_path,
frame_indices=frame_indices,
start_frame=start_frame,
end_frame=end_frame,
n_frames=n_frames,
time_indices=time_indices,
start_time=start_time,
end_time=end_time,
sampling_fps=fps,
mask_boxes=mask_boxes,
is_training=self.is_training,
video_sampling_strategy=self.video_sampling_strategy,
return_frame_ids=True,
)
if self.video_sampling_strategy.get('use_multi_images_for_video', False):
new_frames = []
for f in frames:
new_frames.extend([f, f])
frames = new_frames
if isinstance(frame_indices, dict):
return {
'frames': frames,
'video_info': frame_indices
}
return {'frames': frames}
def postprocess_text(self, content, data_dict, image_processing_config, first_image):
if image_processing_config.get('has_coordinates') and image_processing_config.get('do_padding'):
content['text'] = adjust_bbox(content['text'], frame=first_image)
if data_dict.get('task') == 'image/OCR' and image_processing_config.get('has_coordinates'):
content['text'] = filter_ocr_polygon(content['text'])
|