Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,442 Bytes
dcd4560 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
from typing import Dict, List
import random
import re
from PIL import Image
from .utils import sample_video, read_image
class MultiImagesParser:
def __init__(
self,
n_frames=8,
is_training=True,
):
self.n_frames = n_frames
self.is_training = is_training
# fmt: off
self.data_temp = {
"text": [
[{
"prompt": "Describe the image in short.",
"response": "A rollerblader rides high in a full pipe while others watch"
}],
[{
"prompt": "Describe the image in short.",
"response": "A woman in winter clothes is on the sidewalk with a phone."
}]
],
"image": [
{
"image_file": "/mnt/bn/videonaslq/images/flickr30k/images/3371533654.jpg"
},
{
"image_file": "/mnt/bn/videonaslq/images/coco/train2014/COCO_train2014_000000177950.jpg"
},
{
"video_file": "/mnt/bn/llmdatalq/jiangnan/video_generation/webvid_10M_download/20230609/videos/011851_011900/1047443473.mp4",
"frame_indices": [0, 85, 171, 256, 342, 427, 513, 598]
}
],
"dataset": "coco",
"task": "multi_images",
"image_processing_config": {},
}
# fmt: on
def check_format(self, data_dict: Dict, image_processing_config: Dict):
assert data_dict['dataset'] in ['coco', 'sharegpt4v_cap100k', 'sharegpt4v_mix665k', 'webvid', 'movie'], data_dict
# 目前多图数据应该没有包含坐标的数据吧
if image_processing_config.get('has_coordinates', False):
raise ValueError(f'do_crop and has_coordinates cannot be True at the same time in MultiImagesParser!')
# 检查是否能匹配到坐标
texts = data_dict['text']
for text in texts:
match = re.search(r'\[(\d+(\.\d+)?,\s*)+\d+(\.\d+)?\]', text['prompt'] + text['response'])
if match:
print(f'[Warning] 疑似检测到包含坐标的数据:{data_dict}')
def transform(self, data_dict: Dict, image_processing_config: Dict = None) -> Dict:
self.check_format(data_dict, image_processing_config)
# shuffle
texts = data_dict['text']
images = data_dict['image']
images = self.load_images(images)
idxs = list(range(len(texts)))
random.shuffle(idxs)
texts = [texts[i] for i in idxs]
images = [images[i] for i in idxs]
# sample n_frames
if isinstance(self.n_frames, int):
n_frames = random.choice(list(range(1, self.n_frames + 1)))
else:
n_frames = random.choice(self.n_frames)
texts = texts[: n_frames]
images = images[: n_frames]
dataset = data_dict['dataset']
if dataset in ['coco', 'sharegpt4v_cap100k', 'webvid', 'movie']:
prompt, response = self.transform_for_caption_task(texts, dataset, images)
else:
prompt, response = self.transform_for_qa_task(texts, dataset, images)
messages = [
{
"role": "user",
"content": [
*[{"type": "image", "image": img} for img in images],
{"type": "text", "text": prompt},
]
},
{
"role": "assistant",
"content": [
{"type": "text", "text": response}
]
}
]
return messages
def transform_for_caption_task(self, texts, dataset, images):
idx = random.choice(list(range(len(texts))))
if dataset == 'coco':
if len(texts) == 1:
prompt = 'Describe the image in short.'
else:
prompt = f'Describe the images starting from frame {idx + 1} in short in order.'
elif dataset == 'sharegpt4v_cap100k':
if len(texts) == 1:
prompt = 'Describe the image in detail.'
else:
prompt = f'Describe the images starting from frame {idx + 1} in detail in order.'
else:
if len(texts) == 1:
prompt = 'Describe the image.'
else:
prompt = f'Describe the images starting from frame {idx + 1} in order.'
response = ''
for i, text in enumerate(texts):
if i < idx:
continue
if not isinstance(text, dict):
text = random.choice(text)
resp = text['response']
response += f'{resp}\n'
return prompt, response
def transform_for_qa_task(self, texts, dataset, images):
prompt, response = '', ''
for i, text in enumerate(texts):
if not isinstance(text, dict):
text = random.choice(text)
if len(texts) > 1:
prompt += f'Question for frame {i+1}:\n' + text['prompt'] + '\n'
response += f'Answer to question of frame {i+1}:\n' + text['response'] + '\n'
else:
prompt += text['prompt'] + '\n'
response += text['response'] + '\n'
return prompt, response
def load_images(self, image_items: List[Dict]) -> List[Image.Image]:
"""
image_items: List[Dict]. each item like:
{"video_file": "path/to/video", "frame_indices": [1]}
or
{"image_file": "path/to/image"}
"""
if image_items is None:
raise ValueError(f'image_items is None!')
if isinstance(image_items, dict):
image_items = [image_items]
images = []
for image_item in image_items:
if 'video_file' in image_item:
file_key = 'video_file'
elif 'image_file' in image_item:
file_key = 'image_file'
else:
raise KeyError(f'video_file or image_file not in {image_item}')
file_path = image_item[file_key]
if file_key == 'video_file':
frame_indices = image_item.get('frame_indices', None)
if frame_indices is None:
raise ValueError(f'read 0 frame: {image_item}')
if isinstance(frame_indices, int):
frame_indices = [frame_indices]
frames = sample_video(file_path, frame_indices = frame_indices)
images.extend(frames)
else:
if isinstance(file_path, str):
file_path = [file_path]
images.extend([read_image(f) for f in file_path])
return images
if __name__ == '__main__':
# python3 -m xenon_generation.data.custom_data_parsers.multi_images_parser
from tqdm import tqdm
from tools.rw_utils import read_jsonlines
lines = read_jsonlines('/mnt/bn/videonaslq/VideoCaption/datasets_1009/sharegpt4v_cap100k/part_36.jsonl')
lines = lines[:10]
parser = MultiImagesParser(n_frames=8)
for i, l in tqdm(enumerate(lines)):
l_image_processing_config = l.get('image_processing_config', {})
messages = parser.transform(l, l_image_processing_config)
print(messages) |