Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,156 Bytes
97a05c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
# Copyright (2024) Bytedance Ltd. and/or its affiliates
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# copy and modify from: https://github.com/OpenGVLab/Ask-Anything/blob/main/video_chat2/conversation.py
from PIL import Image
import torch
from transformers import StoppingCriteria, StoppingCriteriaList
from enum import auto, Enum
import os
from dataset.processor import Processor
import re
IMAGE_TOKEN = "<image>"
VIDEO_TOKEN = "<video>"
class SeparatorStyle(Enum):
"""Different separator style."""
SINGLE = auto()
TWO = auto()
def get_prompt(conv):
ret = ""
if conv.system:
ret = conv.system + conv.sep1
for i, (role, message) in enumerate(conv.messages):
if message:
# In current version, the image should be add at the first conversation round.
# So we need to remove the special image tokens in following user input.
if i > 0:
message = re.sub(f"({IMAGE_TOKEN}|{VIDEO_TOKEN})\n*", "", message)
ret += role + ": " + message
if i % 2:
ret += conv.sep2
else:
ret += conv.sep1
else:
ret += role + ":"
return ret
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self, stops=[], encounters=1):
super().__init__()
self.stops = stops
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
for stop in self.stops:
if torch.all((stop == input_ids[0][-len(stop):])).item():
return True
return False
class Chat:
def __init__(self, model, processor: Processor, device='cuda', debug=False):
self.model = model
self.processor = processor
self.device = device
self.debug = debug
stop_words_ids = [torch.tensor([self.processor.tokenizer.eos_token_id]).to(device)]
self.stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
def ask(self,text,conv):
conv.messages.append([conv.roles[0], text])
return conv
def prepare_model_inputs(self, conv, visual_data_file=None, images=None, n_frames=None):
conv.messages.append([conv.roles[1], None])
conv.messages[0][1] = re.sub(f"({IMAGE_TOKEN}|{VIDEO_TOKEN})\n*", "", conv.messages[0][1])
if images is None or isinstance(images, list) and len(images) == 0:
if isinstance(visual_data_file, str) and os.path.exists(visual_data_file):
images = self.processor.load_images(visual_data_file, n_frames)
elif isinstance(visual_data_file, Image.Image):
images = [visual_data_file]
elif visual_data_file is None or visual_data_file == "":
images = None
else:
raise NotImplementedError
if isinstance(images, list) and len(images) > 0:
conv.messages[0][1] = IMAGE_TOKEN*len(images) + '\n' + conv.messages[0][1]
prompt = get_prompt(conv)
if self.debug:
print(f"visual_data_file: {visual_data_file}")
print(f"Prompt: {prompt}", flush=True)
inputs = self.processor(prompt, images=images, edit_prompt=False, return_prompt=False)
inputs = {k:v.to(self.device) for k,v in inputs.items() if v is not None}
return inputs, conv, images
def answer(self, conv, visual_data_file=None, images=None, n_frames=None, max_new_tokens=512, num_beams=1, min_length=1, top_p=1.0,
repetition_penalty=1.0, length_penalty=1, temperature=0):
inputs, conv, images = self.prepare_model_inputs(conv, visual_data_file, images, n_frames)
if self.model is not None:
outputs = self.model.generate(
**inputs,
max_new_tokens=max_new_tokens,
stopping_criteria=self.stopping_criteria,
num_beams=num_beams,
do_sample=True if temperature > 0 else False,
min_length=min_length,
top_p=top_p,
repetition_penalty=repetition_penalty,
length_penalty=length_penalty,
temperature=temperature,
)
output_text = self.processor.tokenizer.decode(outputs[0][inputs['input_ids'][0].shape[0]:], skip_special_tokens=True)
else:
output_text = "Fake respone as launched in debug mode!"
conv.messages[-1][1] = output_text
return output_text, conv, images
class EasyDict(dict):
"""
Get attributes
>>> d = EasyDict({'foo':3})
>>> d['foo']
3
>>> d.foo
3
>>> d.bar
Traceback (most recent call last):
...
AttributeError: 'EasyDict' object has no attribute 'bar'
Works recursively
>>> d = EasyDict({'foo':3, 'bar':{'x':1, 'y':2}})
>>> isinstance(d.bar, dict)
True
>>> d.bar.x
1
"""
def __init__(self, d=None, **kwargs):
if d is None:
d = {}
if kwargs:
d.update(**kwargs)
for k, v in d.items():
setattr(self, k, v)
# Class attributes
for k in self.__class__.__dict__.keys():
if not (k.startswith("__") and k.endswith("__")) and not k in ("update", "pop"):
setattr(self, k, getattr(self, k))
def __setattr__(self, name, value):
if isinstance(value, (list, tuple)):
value = [self.__class__(x) if isinstance(x, dict) else x for x in value]
elif isinstance(value, dict) and not isinstance(value, self.__class__):
value = self.__class__(value)
super(EasyDict, self).__setattr__(name, value)
super(EasyDict, self).__setitem__(name, value)
__setitem__ = __setattr__
def update(self, e=None, **f):
d = e or dict()
d.update(f)
for k in d:
setattr(self, k, d[k])
def pop(self, k, d=None):
if hasattr(self, k):
delattr(self, k)
return super(EasyDict, self).pop(k, d)
conv_tarsier = EasyDict({
"system": "",
"roles": ("USER", "ASSISTANT"),
"messages": [],
"sep1": " ",
"sep2": "</s>",
}
)
conv_tarsier_yi = EasyDict({
"system": "",
"roles": ("USER", "ASSISTANT"),
"messages": [],
"sep1": " ",
"sep2": "<|endoftext|>",
}
)
conv_tarsier_qwen2 = EasyDict({
"system": "",
"roles": ("USER", "ASSISTANT"),
"messages": [],
"sep1": " ",
"sep2": "<|endoftext|>",
}
)
conv_templates = {
"tarsier-7b": conv_tarsier,
"tarsier-13b": conv_tarsier,
"tarsier-34b": conv_tarsier_yi,
"tarsier2-7b": conv_tarsier_qwen2
}
|