Spaces:
Running
Running
liaojiajia
commited on
Commit
·
9ec00c3
1
Parent(s):
5740e03
add mm results
Browse files- app.py +107 -0
- gen_table.py +73 -5
- meta_data.py +18 -1
- preprocess.py +45 -2
- src/detail_math_score.json +1 -1
- src/multi-modal.csv +10 -0
- src/multi_modal_results.csv +10 -0
- src/multi_modal_results.json +86 -0
- src/overall_math_score.json +1 -1
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import abc
|
2 |
import gradio as gr
|
3 |
import os
|
|
|
4 |
|
5 |
from gen_table import *
|
6 |
from meta_data import *
|
@@ -242,6 +243,112 @@ with gr.Blocks(title="Open Agent Leaderboard") as demo:
|
|
242 |
outputs=data_component
|
243 |
)
|
244 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
|
246 |
with gr.Row():
|
247 |
with gr.Accordion("📙 Citation", open=False):
|
|
|
1 |
import abc
|
2 |
import gradio as gr
|
3 |
import os
|
4 |
+
import pandas as pd
|
5 |
|
6 |
from gen_table import *
|
7 |
from meta_data import *
|
|
|
243 |
outputs=data_component
|
244 |
)
|
245 |
|
246 |
+
with gr.Tab(label='🏅 Open Agent Multi-Modal Leaderboard'):
|
247 |
+
gr.Markdown(LEADERBOARD_MD['MULTI_MODAL_MAIN'])
|
248 |
+
struct_multi_modal = load_results(MULTIMODAL_SCORE_FILE)
|
249 |
+
timestamp = struct_multi_modal['time']
|
250 |
+
EVAL_TIME_MM = format_timestamp(timestamp)
|
251 |
+
|
252 |
+
# Use BUILD_L3_DF to process multi-modal results (pass the list directly)
|
253 |
+
table_mm, check_box_mm = BUILD_L3_DF(
|
254 |
+
struct_multi_modal['multi_modal_results'], DEFAULT_MULTI_MODAL_BENCH
|
255 |
+
)
|
256 |
+
|
257 |
+
# Save the complete table as a CSV file
|
258 |
+
csv_path_multi_modal = os.path.join(os.getcwd(), 'src/multi_modal_results.csv')
|
259 |
+
table_mm.to_csv(csv_path_multi_modal, index=False)
|
260 |
+
print(f"Multi-modal results saved to {csv_path_multi_modal}")
|
261 |
+
|
262 |
+
type_map_mm = check_box_mm['type_map']
|
263 |
+
|
264 |
+
checkbox_group_mm = gr.CheckboxGroup(
|
265 |
+
choices=check_box_mm['all'],
|
266 |
+
value=check_box_mm['required'],
|
267 |
+
label='Evaluation Dimension',
|
268 |
+
interactive=True,
|
269 |
+
)
|
270 |
+
|
271 |
+
agent_name_mm = gr.CheckboxGroup(
|
272 |
+
choices=table_mm['Agent'].unique().tolist(),
|
273 |
+
value=table_mm['Agent'].unique().tolist(),
|
274 |
+
label='Agent',
|
275 |
+
interactive=True
|
276 |
+
)
|
277 |
+
|
278 |
+
vlm_name_mm = gr.CheckboxGroup(
|
279 |
+
choices=table_mm['VLMs'].unique().tolist(),
|
280 |
+
value=table_mm['VLMs'].unique().tolist(),
|
281 |
+
label='VLMs',
|
282 |
+
interactive=True
|
283 |
+
)
|
284 |
+
|
285 |
+
initial_headers_mm = ['Rank'] + check_box_mm['essential'] + checkbox_group_mm.value
|
286 |
+
available_headers_mm = [h for h in initial_headers_mm if h in table_mm.columns]
|
287 |
+
|
288 |
+
data_component_mm = gr.components.DataFrame(
|
289 |
+
value=table_mm[available_headers_mm],
|
290 |
+
type='pandas',
|
291 |
+
datatype=[type_map_mm[x] for x in available_headers_mm],
|
292 |
+
interactive=False,
|
293 |
+
wrap=True,
|
294 |
+
visible=True
|
295 |
+
)
|
296 |
+
|
297 |
+
def filter_df_mm(fields, agents, vlms, *args):
|
298 |
+
headers = ['Rank'] + check_box_mm['essential'] + fields
|
299 |
+
df = table_mm.copy()
|
300 |
+
|
301 |
+
# Validate inputs to avoid errors
|
302 |
+
if not agents:
|
303 |
+
agents = df['Agent'].unique().tolist()
|
304 |
+
if not vlms:
|
305 |
+
vlms = df['VLMs'].unique().tolist()
|
306 |
+
|
307 |
+
# Add filtering logic
|
308 |
+
df['flag'] = df.apply(lambda row: (
|
309 |
+
row['Agent'] in agents and
|
310 |
+
row['VLMs'] in vlms
|
311 |
+
), axis=1)
|
312 |
+
|
313 |
+
df = df[df['flag']].copy()
|
314 |
+
df.pop('flag')
|
315 |
+
|
316 |
+
# Ensure all requested columns exist
|
317 |
+
available_headers = [h for h in headers if h in df.columns]
|
318 |
+
|
319 |
+
# If no columns are available, return an empty DataFrame with basic columns
|
320 |
+
if not available_headers:
|
321 |
+
available_headers = ['Rank'] + check_box_mm['essential']
|
322 |
+
|
323 |
+
comp = gr.components.DataFrame(
|
324 |
+
value=df[available_headers],
|
325 |
+
type='pandas',
|
326 |
+
datatype=[type_map_mm.get(col, 'str') for col in available_headers],
|
327 |
+
interactive=False,
|
328 |
+
wrap=True,
|
329 |
+
visible=True
|
330 |
+
)
|
331 |
+
|
332 |
+
return comp
|
333 |
+
|
334 |
+
# Add change events for multi-modal leaderboard
|
335 |
+
checkbox_group_mm.change(
|
336 |
+
fn=filter_df_mm,
|
337 |
+
inputs=[checkbox_group_mm, agent_name_mm, vlm_name_mm],
|
338 |
+
outputs=data_component_mm
|
339 |
+
)
|
340 |
+
|
341 |
+
agent_name_mm.change(
|
342 |
+
fn=filter_df_mm,
|
343 |
+
inputs=[checkbox_group_mm, agent_name_mm, vlm_name_mm],
|
344 |
+
outputs=data_component_mm
|
345 |
+
)
|
346 |
+
|
347 |
+
vlm_name_mm.change(
|
348 |
+
fn=filter_df_mm,
|
349 |
+
inputs=[checkbox_group_mm, agent_name_mm, vlm_name_mm],
|
350 |
+
outputs=data_component_mm
|
351 |
+
)
|
352 |
|
353 |
with gr.Row():
|
354 |
with gr.Accordion("📙 Citation", open=False):
|
gen_table.py
CHANGED
@@ -97,14 +97,14 @@ def BUILD_L2_DF(results, fields):
|
|
97 |
# Create DataFrame
|
98 |
df = pd.DataFrame(res)
|
99 |
|
100 |
-
#
|
101 |
unique_algorithms = df['Algorithm'].unique().tolist()
|
102 |
unique_llms = df['LLM'].unique().tolist()
|
103 |
|
104 |
# Set checkbox configuration
|
105 |
check_box = {}
|
106 |
-
check_box['Algorithm_options'] = unique_algorithms #
|
107 |
-
check_box['LLM_options'] = unique_llms #
|
108 |
|
109 |
# Sort by Dataset and Score in descending order
|
110 |
df = df.sort_values(['Dataset', 'Score'], ascending=[True, False])
|
@@ -183,7 +183,7 @@ def generate_table(results, fields):
|
|
183 |
df = pd.concat([valid, missing])
|
184 |
df = df.sort_values('Rank')
|
185 |
|
186 |
-
#
|
187 |
columns = ['Rank', 'Algorithm', 'LLM', 'Eval Date', 'Avg Score']
|
188 |
for d in fields:
|
189 |
columns.extend([f"{d}-Score", f"{d}-Cost($)"])
|
@@ -238,4 +238,72 @@ def generate_table_detail(results, fields):
|
|
238 |
remaining_columns = [col for col in df.columns if col not in columns]
|
239 |
df = df[columns + remaining_columns]
|
240 |
|
241 |
-
return df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
# Create DataFrame
|
98 |
df = pd.DataFrame(res)
|
99 |
|
100 |
+
# Get all unique Algorithms and LLM
|
101 |
unique_algorithms = df['Algorithm'].unique().tolist()
|
102 |
unique_llms = df['LLM'].unique().tolist()
|
103 |
|
104 |
# Set checkbox configuration
|
105 |
check_box = {}
|
106 |
+
check_box['Algorithm_options'] = unique_algorithms # Add Algorithm Options
|
107 |
+
check_box['LLM_options'] = unique_llms # Add LLM option
|
108 |
|
109 |
# Sort by Dataset and Score in descending order
|
110 |
df = df.sort_values(['Dataset', 'Score'], ascending=[True, False])
|
|
|
183 |
df = pd.concat([valid, missing])
|
184 |
df = df.sort_values('Rank')
|
185 |
|
186 |
+
# Rearrange column order
|
187 |
columns = ['Rank', 'Algorithm', 'LLM', 'Eval Date', 'Avg Score']
|
188 |
for d in fields:
|
189 |
columns.extend([f"{d}-Score", f"{d}-Cost($)"])
|
|
|
238 |
remaining_columns = [col for col in df.columns if col not in columns]
|
239 |
df = df[columns + remaining_columns]
|
240 |
|
241 |
+
return df
|
242 |
+
|
243 |
+
def generate_multi_modal_table(results, fields):
|
244 |
+
res = defaultdict(list)
|
245 |
+
for entry in results.values():
|
246 |
+
# Add Agent and VLMs
|
247 |
+
res['Agent'].append(entry.get('Agent', 'Unknown'))
|
248 |
+
res['VLMs'].append(entry.get('VLMs', 'Unknown'))
|
249 |
+
|
250 |
+
# Add numeric fields
|
251 |
+
for field in fields:
|
252 |
+
res[field].append(entry.get(field, None))
|
253 |
+
|
254 |
+
# Create DataFrame
|
255 |
+
df = pd.DataFrame(res)
|
256 |
+
|
257 |
+
# Sort by Score in descending order
|
258 |
+
df = df.sort_values('Score', ascending=False)
|
259 |
+
|
260 |
+
# Add Rank column
|
261 |
+
df['Rank'] = range(1, len(df) + 1)
|
262 |
+
|
263 |
+
# Rearrange column order
|
264 |
+
columns = ['Rank', 'Agent', 'VLMs'] + fields
|
265 |
+
df = df[columns]
|
266 |
+
|
267 |
+
return df
|
268 |
+
|
269 |
+
def BUILD_L3_DF(results, fields):
|
270 |
+
res = defaultdict(list)
|
271 |
+
|
272 |
+
# Iterate over each entry in the multi-modal results (results is a list)
|
273 |
+
for entry in results:
|
274 |
+
# Add Agent and VLMs
|
275 |
+
res['Agent'].append(entry.get('Agent', 'Unknown'))
|
276 |
+
res['VLMs'].append(entry.get('VLMs', 'Unknown'))
|
277 |
+
|
278 |
+
# Add numeric fields
|
279 |
+
for field in fields:
|
280 |
+
res[field].append(entry.get(field, None))
|
281 |
+
|
282 |
+
# Create DataFrame
|
283 |
+
df = pd.DataFrame(res)
|
284 |
+
|
285 |
+
# Sort by Score in descending order
|
286 |
+
df = df.sort_values('Score', ascending=False)
|
287 |
+
|
288 |
+
# Add Rank column
|
289 |
+
df['Rank'] = range(1, len(df) + 1)
|
290 |
+
|
291 |
+
# Rearrange column order
|
292 |
+
columns = ['Rank', 'Agent', 'VLMs'] + fields
|
293 |
+
df = df[columns]
|
294 |
+
|
295 |
+
# Set checkbox configuration
|
296 |
+
check_box = {}
|
297 |
+
check_box['essential'] = ['Agent', 'VLMs']
|
298 |
+
check_box['required'] = check_box['essential'] + fields
|
299 |
+
check_box['all'] = ['Rank'] + fields
|
300 |
+
|
301 |
+
type_map = defaultdict(lambda: 'number')
|
302 |
+
type_map['Agent'] = 'str'
|
303 |
+
type_map['VLMs'] = 'str'
|
304 |
+
type_map['Rank'] = 'number'
|
305 |
+
for field in fields:
|
306 |
+
type_map[field] = 'number'
|
307 |
+
check_box['type_map'] = type_map
|
308 |
+
|
309 |
+
return df, check_box
|
meta_data.py
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
# CONSTANTS-URL
|
2 |
OVERALL_MATH_SCORE_FILE = "src/overall_math_score.json"
|
3 |
DETAIL_MATH_SCORE_FILE = "src/detail_math_score.json"
|
|
|
4 |
|
5 |
# CONSTANTS-TEXT
|
6 |
LEADERBORAD_INTRODUCTION = """# Open Agent Leaderboard
|
7 |
### Welcome to the Open Agent Leaderboard! We share the evaluation results of open agents: CoT, SC-CoT, PoT, ReAct, ToT, etc. The agents are implemented by the OpenSource Framework: [*OmAgent*](https://github.com/om-ai-lab/OmAgent)
|
8 |
|
9 |
-
We are excited to announce that the paper "Unifying Language Agent Algorithms with Graph-based Orchestration Engine for Reproducible Agent Research" has been accepted to ACL 2025 Systems Demonstration Track! 🎉
|
10 |
|
11 |
This leaderboard was last updated: {}.
|
12 |
|
@@ -18,6 +19,9 @@ DEFAULT_MATH_BENCH = [
|
|
18 |
'gsm8k', 'AQuA', 'MATH-500',
|
19 |
]
|
20 |
|
|
|
|
|
|
|
21 |
# The README file for each benchmark
|
22 |
LEADERBOARD_MD = {}
|
23 |
|
@@ -69,6 +73,19 @@ LEADERBOARD_MD['MATH_DETAIL'] = f"""
|
|
69 |
- ReAct-Pro*: We modified ReAct to ReAct-Pro, following the Reflexion repository. Implementation details can be found in the [*OmAgent*](https://github.com/om-ai-lab/OmAgent) repository.
|
70 |
"""
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
META_FIELDS = [
|
73 |
'Algorithm', 'LLM', 'Eval Date'
|
74 |
]
|
|
|
1 |
# CONSTANTS-URL
|
2 |
OVERALL_MATH_SCORE_FILE = "src/overall_math_score.json"
|
3 |
DETAIL_MATH_SCORE_FILE = "src/detail_math_score.json"
|
4 |
+
MULTIMODAL_SCORE_FILE = "src/multi_modal_results.json"
|
5 |
|
6 |
# CONSTANTS-TEXT
|
7 |
LEADERBORAD_INTRODUCTION = """# Open Agent Leaderboard
|
8 |
### Welcome to the Open Agent Leaderboard! We share the evaluation results of open agents: CoT, SC-CoT, PoT, ReAct, ToT, etc. The agents are implemented by the OpenSource Framework: [*OmAgent*](https://github.com/om-ai-lab/OmAgent)
|
9 |
|
10 |
+
We are excited to announce that the paper "Unifying Language Agent Algorithms with Graph-based Orchestration Engine for Reproducible Agent Research" has been accepted to ACL 2025 Systems Demonstration Track! [*Paper*](https://arxiv.org/abs/2505.24354) 🎉
|
11 |
|
12 |
This leaderboard was last updated: {}.
|
13 |
|
|
|
19 |
'gsm8k', 'AQuA', 'MATH-500',
|
20 |
]
|
21 |
|
22 |
+
DEFAULT_MULTI_MODAL_BENCH = ['Score', 'Pass Rate', 'Total Input Tokens', 'Total Output Tokens', 'All Tokens']
|
23 |
+
|
24 |
+
|
25 |
# The README file for each benchmark
|
26 |
LEADERBOARD_MD = {}
|
27 |
|
|
|
73 |
- ReAct-Pro*: We modified ReAct to ReAct-Pro, following the Reflexion repository. Implementation details can be found in the [*OmAgent*](https://github.com/om-ai-lab/OmAgent) repository.
|
74 |
"""
|
75 |
|
76 |
+
LEADERBOARD_MD['MULTI_MODAL_MAIN'] = f"""
|
77 |
+
## Math task main Evaluation Results
|
78 |
+
|
79 |
+
- Metrics:
|
80 |
+
- Score: The evaluation score on each Benchmarks (the higher the better).
|
81 |
+
- Pass rate: The percentage of response that are valid, where a response is valid if it is neither empty nor null.
|
82 |
+
|
83 |
+
- By default, we present the overall evaluation results based on MME-RealWorld, sorted by the descending order of Score.
|
84 |
+
|
85 |
+
- IO (Input-Output): The baseline method that directly prompts the model with the question and expects an answer without any intermediate reasoning steps.
|
86 |
+
|
87 |
+
"""
|
88 |
+
|
89 |
META_FIELDS = [
|
90 |
'Algorithm', 'LLM', 'Eval Date'
|
91 |
]
|
preprocess.py
CHANGED
@@ -174,7 +174,50 @@ def process_csv_to_overall_json():
|
|
174 |
with open('src/overall_math_score.json', 'w', encoding='utf-8') as f:
|
175 |
json.dump(result, f, indent=4, ensure_ascii=False)
|
176 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
if __name__ == "__main__":
|
178 |
-
# Generate JSON files in
|
179 |
process_csv_to_json()
|
180 |
-
process_csv_to_overall_json()
|
|
|
|
174 |
with open('src/overall_math_score.json', 'w', encoding='utf-8') as f:
|
175 |
json.dump(result, f, indent=4, ensure_ascii=False)
|
176 |
|
177 |
+
def process_multi_modal_csv():
|
178 |
+
# Read the CSV file
|
179 |
+
df = pd.read_csv('src/multi-modal.csv', skipinitialspace=True)
|
180 |
+
|
181 |
+
# Clean and rename columns
|
182 |
+
df.columns = df.columns.str.strip().str.replace('="', '').str.replace('"', '')
|
183 |
+
df = df.rename(columns={
|
184 |
+
'Agent': 'Agent',
|
185 |
+
'VLMs': 'VLMs',
|
186 |
+
'Score': 'Score',
|
187 |
+
'Pass Rate': 'Pass Rate',
|
188 |
+
'Total Input Tokens': 'Total Input Tokens',
|
189 |
+
'Total Output Tokens': 'Total Output Tokens',
|
190 |
+
'All Tokens': 'All Tokens'
|
191 |
+
})
|
192 |
+
|
193 |
+
# Strip unwanted characters from all string values
|
194 |
+
df = df.applymap(lambda x: str(x).replace('="', '').replace('"', '').strip() if isinstance(x, str) else x)
|
195 |
+
|
196 |
+
# Helper function to parse numbers with commas
|
197 |
+
def parse_number(value):
|
198 |
+
if pd.isna(value) or value == '-':
|
199 |
+
return 0
|
200 |
+
return int(float(str(value).replace(',', '')))
|
201 |
+
|
202 |
+
# Process numeric fields
|
203 |
+
df['Score'] = df['Score'].apply(lambda x: round(float(x), 2) if pd.notnull(x) and x != '-' else 0.0)
|
204 |
+
df['Pass Rate'] = df['Pass Rate'].apply(lambda x: round(float(x) / 100, 4) if pd.notnull(x) and x != '-' else 0.0)
|
205 |
+
df['Total Input Tokens'] = df['Total Input Tokens'].apply(parse_number)
|
206 |
+
df['Total Output Tokens'] = df['Total Output Tokens'].apply(parse_number)
|
207 |
+
df['All Tokens'] = df['All Tokens'].apply(parse_number)
|
208 |
+
|
209 |
+
# Convert to Hugging Face-compatible format
|
210 |
+
result = {
|
211 |
+
"time": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
212 |
+
"multi_modal_results": df.to_dict(orient='records')
|
213 |
+
}
|
214 |
+
|
215 |
+
# Save as JSON file
|
216 |
+
with open('src/multi_modal_results.json', 'w', encoding='utf-8') as f:
|
217 |
+
json.dump(result, f, indent=4, ensure_ascii=False)
|
218 |
+
|
219 |
if __name__ == "__main__":
|
220 |
+
# Generate JSON files in three formats
|
221 |
process_csv_to_json()
|
222 |
+
process_csv_to_overall_json()
|
223 |
+
process_multi_modal_csv()
|
src/detail_math_score.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"time": "2025-
|
3 |
"results": {
|
4 |
"IO": {
|
5 |
"gpt-3.5-turbo": {
|
|
|
1 |
{
|
2 |
+
"time": "2025-06-25 18:17:55",
|
3 |
"results": {
|
4 |
"IO": {
|
5 |
"gpt-3.5-turbo": {
|
src/multi-modal.csv
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"=""Agent""","=""VLMs""","=""Score""","=""Pass Rate""","=""Total Input Tokens""","=""Total Output Tokens""","=""All Tokens""
|
2 |
+
"=""ZoomEye""","=""Qwen2.5-VL-72B-Instruct""","=""51.56""","=""99.81""","=""76,808,965""","=""1,276,460""","=""78,085,425""
|
3 |
+
"=""ZoomEye""","=""Qwen2.5-VL-7B-Instruct""","=""48.06""","=""96.50""","=""94,418,593""","=""1,472,836""","=""95,891,429""
|
4 |
+
"=""IO""","=""Qwen2.5-VL-72B-Instruct""","=""44.47""","=""100.00""","=""6,174,490""","=""2,114""","=""6,176,604""
|
5 |
+
"=""ZoomEye""","=""InternVL2.5-8B""","=""43.42""","=""99.34""","=""153,857,588""","=""2,017,170""","=""155,874,758""
|
6 |
+
"=""IO""","=""InternVL2.5-8B""","=""42.95""","=""100.00""","=""2,779,778""","=""2,335""","=""2,782,113""
|
7 |
+
"=""IO""","=""Qwen2.5-VL-7B-Instruct""","=""42.86""","=""100.00""","=""6,174,490""","=""2,114""","=""6,176,604""
|
8 |
+
"=""ZoomEye""","=""Llava-v1.5-7B""","=""31.60""","=""98.86""","=""113,073,261""","=""1,368,724""","=""114,441,985""
|
9 |
+
"=""IO""","=""Llava-v1.5-7B""","=""24.79""","=""100.00""","=""734,868""","=""17,036""","=""751,904""
|
10 |
+
"=""V*""","=""seal_vqa & seal_vsm""","=""15.14""","=""72.37""","=""-""","=""-""","=""-"""
|
src/multi_modal_results.csv
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Rank,Agent,VLMs,Score,Pass Rate,Total Input Tokens,Total Output Tokens,All Tokens
|
2 |
+
1,ZoomEye,Qwen2.5-VL-72B-Instruct,51.56,0.9981,76808965,1276460,78085425
|
3 |
+
2,ZoomEye,Qwen2.5-VL-7B-Instruct,48.06,0.965,94418593,1472836,95891429
|
4 |
+
3,IO,Qwen2.5-VL-72B-Instruct,44.47,1.0,6174490,2114,6176604
|
5 |
+
4,ZoomEye,InternVL2.5-8B,43.42,0.9934,153857588,2017170,155874758
|
6 |
+
5,IO,InternVL2.5-8B,42.95,1.0,2779778,2335,2782113
|
7 |
+
6,IO,Qwen2.5-VL-7B-Instruct,42.86,1.0,6174490,2114,6176604
|
8 |
+
7,ZoomEye,Llava-v1.5-7B,31.6,0.9886,113073261,1368724,114441985
|
9 |
+
8,IO,Llava-v1.5-7B,24.79,1.0,734868,17036,751904
|
10 |
+
9,V*,seal_vqa & seal_vsm,15.14,0.7237,0,0,0
|
src/multi_modal_results.json
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"time": "2025-06-25 18:17:55",
|
3 |
+
"multi_modal_results": [
|
4 |
+
{
|
5 |
+
"Agent": "ZoomEye",
|
6 |
+
"VLMs": "Qwen2.5-VL-72B-Instruct",
|
7 |
+
"Score": 51.56,
|
8 |
+
"Pass Rate": 0.9981,
|
9 |
+
"Total Input Tokens": 76808965,
|
10 |
+
"Total Output Tokens": 1276460,
|
11 |
+
"All Tokens": 78085425
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"Agent": "ZoomEye",
|
15 |
+
"VLMs": "Qwen2.5-VL-7B-Instruct",
|
16 |
+
"Score": 48.06,
|
17 |
+
"Pass Rate": 0.965,
|
18 |
+
"Total Input Tokens": 94418593,
|
19 |
+
"Total Output Tokens": 1472836,
|
20 |
+
"All Tokens": 95891429
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"Agent": "IO",
|
24 |
+
"VLMs": "Qwen2.5-VL-72B-Instruct",
|
25 |
+
"Score": 44.47,
|
26 |
+
"Pass Rate": 1.0,
|
27 |
+
"Total Input Tokens": 6174490,
|
28 |
+
"Total Output Tokens": 2114,
|
29 |
+
"All Tokens": 6176604
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"Agent": "ZoomEye",
|
33 |
+
"VLMs": "InternVL2.5-8B",
|
34 |
+
"Score": 43.42,
|
35 |
+
"Pass Rate": 0.9934,
|
36 |
+
"Total Input Tokens": 153857588,
|
37 |
+
"Total Output Tokens": 2017170,
|
38 |
+
"All Tokens": 155874758
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"Agent": "IO",
|
42 |
+
"VLMs": "InternVL2.5-8B",
|
43 |
+
"Score": 42.95,
|
44 |
+
"Pass Rate": 1.0,
|
45 |
+
"Total Input Tokens": 2779778,
|
46 |
+
"Total Output Tokens": 2335,
|
47 |
+
"All Tokens": 2782113
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"Agent": "IO",
|
51 |
+
"VLMs": "Qwen2.5-VL-7B-Instruct",
|
52 |
+
"Score": 42.86,
|
53 |
+
"Pass Rate": 1.0,
|
54 |
+
"Total Input Tokens": 6174490,
|
55 |
+
"Total Output Tokens": 2114,
|
56 |
+
"All Tokens": 6176604
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"Agent": "ZoomEye",
|
60 |
+
"VLMs": "Llava-v1.5-7B",
|
61 |
+
"Score": 31.6,
|
62 |
+
"Pass Rate": 0.9886,
|
63 |
+
"Total Input Tokens": 113073261,
|
64 |
+
"Total Output Tokens": 1368724,
|
65 |
+
"All Tokens": 114441985
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"Agent": "IO",
|
69 |
+
"VLMs": "Llava-v1.5-7B",
|
70 |
+
"Score": 24.79,
|
71 |
+
"Pass Rate": 1.0,
|
72 |
+
"Total Input Tokens": 734868,
|
73 |
+
"Total Output Tokens": 17036,
|
74 |
+
"All Tokens": 751904
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"Agent": "V*",
|
78 |
+
"VLMs": "seal_vqa & seal_vsm",
|
79 |
+
"Score": 15.14,
|
80 |
+
"Pass Rate": 0.7237,
|
81 |
+
"Total Input Tokens": 0,
|
82 |
+
"Total Output Tokens": 0,
|
83 |
+
"All Tokens": 0
|
84 |
+
}
|
85 |
+
]
|
86 |
+
}
|
src/overall_math_score.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"time": "2025-
|
3 |
"results": {
|
4 |
"IO": {
|
5 |
"META": {
|
|
|
1 |
{
|
2 |
+
"time": "2025-06-25 18:17:55",
|
3 |
"results": {
|
4 |
"IO": {
|
5 |
"META": {
|