from fastapi import FastAPI, Request, Body from huggingface_hub import InferenceClient import random API_URL = "https://api-inference.huggingface.co/models/" client = InferenceClient( "mistralai/Mistral-7B-Instruct-v0.1" ) app = FastAPI() def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt @app.post("/api/v1/generate_text") def generate_text(request: Request, prompt: str = Body()): history = [] # You might need to handle this based on your actual usage print(f"request + {request}") temperature = request.headers.get("temperature", 0.5) # print(f"temperature + {temperature}") top_p = request.headers.get("top_p", 0.95) # print(f"top_p + {top_p}") repetition_penalty = request.headers.get("repetition_penalty", 1.0) # print(f"repetition_penalty + {repetition_penalty}") formatted_prompt = format_prompt(prompt, history) print(f"formatted_prompt + {formatted_prompt}") stream = client.text_generation( formatted_prompt, temperature=temperature, max_new_tokens=512, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=random.randint(0, 10**7), stream=False, details=True, return_full_text=True ) # output = "" # for response in stream: # output += response.token.text # yield output # return output[len(output) - 1] return stream